URLNet: Learning a URL representation with deep learning for malicious URL detection
Malicious URLs host unsolicited content and are used to perpetrate cybercrimes. It is imperative to detect them in a timely manner. Traditionally, this is done through the usage of blacklists, which cannot be exhaustive, and cannot detect newly generated malicious URLs. To address this, recent years...
Saved in:
Main Authors: | LE, Hung, PHAM, Hong Quang, SAHOO, Doyen, HOI, Steven C. H. |
---|---|
Format: | text |
Language: | English |
Published: |
Institutional Knowledge at Singapore Management University
2018
|
Subjects: | |
Online Access: | https://ink.library.smu.edu.sg/sis_research/4135 https://ink.library.smu.edu.sg/context/sis_research/article/5138/viewcontent/UrlNet_2018_wp.pdf |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Singapore Management University |
Language: | English |
Similar Items
-
Cost-Sensitive Online Active Learning with application to malicious URL detection
by: ZHAO, Peilin, et al.
Published: (2013) -
รายการ Nous Space ตอน วิธีเช็ก URL ของเว็บไซต์ให้ปลอดภัย ไม่เสี่ยงโดน Hack ข้อมูล!
by: มหาวิทยาลัยมหิดล. สำนักงานอธิการบดี. งานสื่อสารองค์กร
Published: (2023) -
Recent advances in deep learning for object detection
by: WU, Xiongwei, et al.
Published: (2020) -
Fake news detection using title, URL and tweet and retweet
by: Ang, Bryan Yi Heng
Published: (2024) -
Malicious web content detection by machine learning
by: Hou Y.-T., et al.
Published: (2018)