Instance-specific selection of AOS methods for solving combinatorial optimisation problems via neural networks
Solving combinatorial optimization problems using a fixed set of operators has been known to produce poor quality solutions. Thus, adaptive operator selection (AOS) methods have been proposed. But, despite such effort, challenges such as the choice of suitable AOS method and configuring it correctly...
Saved in:
Main Authors: | , , |
---|---|
Format: | text |
Language: | English |
Published: |
Institutional Knowledge at Singapore Management University
2018
|
Subjects: | |
Online Access: | https://ink.library.smu.edu.sg/sis_research/4285 https://ink.library.smu.edu.sg/context/sis_research/article/5288/viewcontent/LION_2018___Instance_Specific_Selection_of_AOS_Methods_for_Solving_Combinatorial_Optimisation_Problems_via_Neural_Network.pdf |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Singapore Management University |
Language: | English |
id |
sg-smu-ink.sis_research-5288 |
---|---|
record_format |
dspace |
spelling |
sg-smu-ink.sis_research-52882019-02-21T08:27:53Z Instance-specific selection of AOS methods for solving combinatorial optimisation problems via neural networks TENG, Teck Hou (DENG Dehao) LAU, Hoong Chuin GUNAWAN, Aldy Solving combinatorial optimization problems using a fixed set of operators has been known to produce poor quality solutions. Thus, adaptive operator selection (AOS) methods have been proposed. But, despite such effort, challenges such as the choice of suitable AOS method and configuring it correctly for given specific problem instances remain. To overcome these challenges, this work proposes a novel approach known as I-AOS-DOE to perform Instance-specific selection of AOS methods prior to evolutionary search. Furthermore, to configure the AOS methods for the respective problem instances, we apply a Design of Experiment (DOE) technique to determine promising regions of parameter values and to pick the best parameter values from those regions. Our main contribution lies in the use a self-organizing neural network as the offline-trained AOS selection mechanism. This work trains a variant of FALCON known as FL-FALCON using performance data of applying AOS methods on training instances. The performance data comprises derived fitness landscape features, choices of AOS methods and feedback signals. The hypothesis is that a trained FL-FALCON is capable of selecting suitable AOS methods for unknown problem instances. Experiments are conducted to test this hypothesis and compare I-AOS-DOE with existing approaches. Experiment results reveal that I-AOS-DOE can indeed yield the best performance outcome for a sample set of quadratic assignment problem (QAP) instances. 2018-06-01T07:00:00Z text application/pdf https://ink.library.smu.edu.sg/sis_research/4285 info:doi/10.1007/978-3-030-05348-2_9 https://ink.library.smu.edu.sg/context/sis_research/article/5288/viewcontent/LION_2018___Instance_Specific_Selection_of_AOS_Methods_for_Solving_Combinatorial_Optimisation_Problems_via_Neural_Network.pdf http://creativecommons.org/licenses/by-nc-nd/4.0/ Research Collection School Of Computing and Information Systems eng Institutional Knowledge at Singapore Management University Artificial Intelligence and Robotics Operations Research, Systems Engineering and Industrial Engineering |
institution |
Singapore Management University |
building |
SMU Libraries |
continent |
Asia |
country |
Singapore Singapore |
content_provider |
SMU Libraries |
collection |
InK@SMU |
language |
English |
topic |
Artificial Intelligence and Robotics Operations Research, Systems Engineering and Industrial Engineering |
spellingShingle |
Artificial Intelligence and Robotics Operations Research, Systems Engineering and Industrial Engineering TENG, Teck Hou (DENG Dehao) LAU, Hoong Chuin GUNAWAN, Aldy Instance-specific selection of AOS methods for solving combinatorial optimisation problems via neural networks |
description |
Solving combinatorial optimization problems using a fixed set of operators has been known to produce poor quality solutions. Thus, adaptive operator selection (AOS) methods have been proposed. But, despite such effort, challenges such as the choice of suitable AOS method and configuring it correctly for given specific problem instances remain. To overcome these challenges, this work proposes a novel approach known as I-AOS-DOE to perform Instance-specific selection of AOS methods prior to evolutionary search. Furthermore, to configure the AOS methods for the respective problem instances, we apply a Design of Experiment (DOE) technique to determine promising regions of parameter values and to pick the best parameter values from those regions. Our main contribution lies in the use a self-organizing neural network as the offline-trained AOS selection mechanism. This work trains a variant of FALCON known as FL-FALCON using performance data of applying AOS methods on training instances. The performance data comprises derived fitness landscape features, choices of AOS methods and feedback signals. The hypothesis is that a trained FL-FALCON is capable of selecting suitable AOS methods for unknown problem instances. Experiments are conducted to test this hypothesis and compare I-AOS-DOE with existing approaches. Experiment results reveal that I-AOS-DOE can indeed yield the best performance outcome for a sample set of quadratic assignment problem (QAP) instances. |
format |
text |
author |
TENG, Teck Hou (DENG Dehao) LAU, Hoong Chuin GUNAWAN, Aldy |
author_facet |
TENG, Teck Hou (DENG Dehao) LAU, Hoong Chuin GUNAWAN, Aldy |
author_sort |
TENG, Teck Hou (DENG Dehao) |
title |
Instance-specific selection of AOS methods for solving combinatorial optimisation problems via neural networks |
title_short |
Instance-specific selection of AOS methods for solving combinatorial optimisation problems via neural networks |
title_full |
Instance-specific selection of AOS methods for solving combinatorial optimisation problems via neural networks |
title_fullStr |
Instance-specific selection of AOS methods for solving combinatorial optimisation problems via neural networks |
title_full_unstemmed |
Instance-specific selection of AOS methods for solving combinatorial optimisation problems via neural networks |
title_sort |
instance-specific selection of aos methods for solving combinatorial optimisation problems via neural networks |
publisher |
Institutional Knowledge at Singapore Management University |
publishDate |
2018 |
url |
https://ink.library.smu.edu.sg/sis_research/4285 https://ink.library.smu.edu.sg/context/sis_research/article/5288/viewcontent/LION_2018___Instance_Specific_Selection_of_AOS_Methods_for_Solving_Combinatorial_Optimisation_Problems_via_Neural_Network.pdf |
_version_ |
1770574599835090944 |