Generating expensive relationship features from cheap objects
We investigate the problem of object relationship classification of visual scenes. For a relationship object1-predicate-object2 that captures the object interaction, its representation is composed by the combination of object1 and object2 features. As a result, relationship classification models usu...
Saved in:
Main Authors: | , , , |
---|---|
Format: | text |
Language: | English |
Published: |
Institutional Knowledge at Singapore Management University
2019
|
Subjects: | |
Online Access: | https://ink.library.smu.edu.sg/sis_research/4446 https://ink.library.smu.edu.sg/context/sis_research/article/5449/viewcontent/BMVC2019_0657_paper_published.pdf |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Singapore Management University |
Language: | English |
id |
sg-smu-ink.sis_research-5449 |
---|---|
record_format |
dspace |
spelling |
sg-smu-ink.sis_research-54492021-02-19T04:40:22Z Generating expensive relationship features from cheap objects WANG, Xiaogang SUN, Qianru CHUA, Tat-Seng ANG, Marcelo We investigate the problem of object relationship classification of visual scenes. For a relationship object1-predicate-object2 that captures the object interaction, its representation is composed by the combination of object1 and object2 features. As a result, relationship classification models usually bias to the frequent objects, leading to poor generalization to rare or unseen objects. Inspired by the data augmentation methods, we propose a novel Semantic Transform Generative Adversarial Network (ST-GAN) that synthesizes relationship features for rare objects, conditioned on the features from random instances of the objects. Specifically, ST-GAN essentially offers a semantic transform function from cheap object features to expensive relationship features. Here, “cheap” means any easy-to-collect object which possesses an original but undesired relationship attribute, e.g., a sitting person; “expensive” means a target relationship on this object, e.g., person-riding-horse. By generating massive triplet combinations from any object pair with larger variance, ST-GAN can reduce the data bias. Extensive experiments on two benchmarks – Visual Relationship Detection (VRD) and Visual Genome (VG), show that using our synthesized features for data augmentation, the relationship classification model can be consistently improved in various settings such as zero-shot and low-shot. 2019-09-01T07:00:00Z text application/pdf https://ink.library.smu.edu.sg/sis_research/4446 https://ink.library.smu.edu.sg/context/sis_research/article/5449/viewcontent/BMVC2019_0657_paper_published.pdf http://creativecommons.org/licenses/by-nc-nd/4.0/ Research Collection School Of Computing and Information Systems eng Institutional Knowledge at Singapore Management University Visual relationship object detection feature generation Artificial Intelligence and Robotics Numerical Analysis and Scientific Computing |
institution |
Singapore Management University |
building |
SMU Libraries |
continent |
Asia |
country |
Singapore Singapore |
content_provider |
SMU Libraries |
collection |
InK@SMU |
language |
English |
topic |
Visual relationship object detection feature generation Artificial Intelligence and Robotics Numerical Analysis and Scientific Computing |
spellingShingle |
Visual relationship object detection feature generation Artificial Intelligence and Robotics Numerical Analysis and Scientific Computing WANG, Xiaogang SUN, Qianru CHUA, Tat-Seng ANG, Marcelo Generating expensive relationship features from cheap objects |
description |
We investigate the problem of object relationship classification of visual scenes. For a relationship object1-predicate-object2 that captures the object interaction, its representation is composed by the combination of object1 and object2 features. As a result, relationship classification models usually bias to the frequent objects, leading to poor generalization to rare or unseen objects. Inspired by the data augmentation methods, we propose a novel Semantic Transform Generative Adversarial Network (ST-GAN) that synthesizes relationship features for rare objects, conditioned on the features from random instances of the objects. Specifically, ST-GAN essentially offers a semantic transform function from cheap object features to expensive relationship features. Here, “cheap” means any easy-to-collect object which possesses an original but undesired relationship attribute, e.g., a sitting person; “expensive” means a target relationship on this object, e.g., person-riding-horse. By generating massive triplet combinations from any object pair with larger variance, ST-GAN can reduce the data bias. Extensive experiments on two benchmarks – Visual Relationship Detection (VRD) and Visual Genome (VG), show that using our synthesized features for data augmentation, the relationship classification model can be consistently improved in various settings such as zero-shot and low-shot. |
format |
text |
author |
WANG, Xiaogang SUN, Qianru CHUA, Tat-Seng ANG, Marcelo |
author_facet |
WANG, Xiaogang SUN, Qianru CHUA, Tat-Seng ANG, Marcelo |
author_sort |
WANG, Xiaogang |
title |
Generating expensive relationship features from cheap objects |
title_short |
Generating expensive relationship features from cheap objects |
title_full |
Generating expensive relationship features from cheap objects |
title_fullStr |
Generating expensive relationship features from cheap objects |
title_full_unstemmed |
Generating expensive relationship features from cheap objects |
title_sort |
generating expensive relationship features from cheap objects |
publisher |
Institutional Knowledge at Singapore Management University |
publishDate |
2019 |
url |
https://ink.library.smu.edu.sg/sis_research/4446 https://ink.library.smu.edu.sg/context/sis_research/article/5449/viewcontent/BMVC2019_0657_paper_published.pdf |
_version_ |
1770574840792612864 |