Action disambiguation analysis using normalized google-like distance correlogram
Classifying realistic human actions in video remains challenging for existing intro-variability and inter-ambiguity in action classes. Recently, Spatial-Temporal Interest Point (STIP) based local features have shown great promise in complex action analysis. However, these methods have the limitation...
Saved in:
Main Authors: | , |
---|---|
Format: | text |
Language: | English |
Published: |
Institutional Knowledge at Singapore Management University
2012
|
Subjects: | |
Online Access: | https://ink.library.smu.edu.sg/sis_research/4467 https://ink.library.smu.edu.sg/context/sis_research/article/5470/viewcontent/116_accv2012finalpaper.pdf |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Singapore Management University |
Language: | English |
id |
sg-smu-ink.sis_research-5470 |
---|---|
record_format |
dspace |
spelling |
sg-smu-ink.sis_research-54702019-11-28T07:45:51Z Action disambiguation analysis using normalized google-like distance correlogram SUN, Qianru LIU, Hong Classifying realistic human actions in video remains challenging for existing intro-variability and inter-ambiguity in action classes. Recently, Spatial-Temporal Interest Point (STIP) based local features have shown great promise in complex action analysis. However, these methods have the limitation that they typically focus on Bag-of-Words (BoW) algorithm, which can hardly discriminate actions’ ambiguity due to ignoring of spatial-temporal occurrence relations of visual words. In this paper, we propose a new model to capture this contextual relationship in terms of pairwise features’ co-occurrence. Normalized Google-Like Distance (NGLD) is proposed to numerically measuring this co-occurrence, due to its effectiveness in semantic correlation analysis. All pairwise distances compose a NGLD correlogram and its normalized form is incorporated into the final action representation. It is proved a much richer descriptor by observably reducing action ambiguity in experiments, conducted on WEIZMANN dataset and the more challenging UCF sports. Results also demonstrate the proposed model is more effective and robust than BoW on different setups. 2012-11-09T08:00:00Z text application/pdf https://ink.library.smu.edu.sg/sis_research/4467 info:doi/10.1007/978-3-642-37431-9_33 https://ink.library.smu.edu.sg/context/sis_research/article/5470/viewcontent/116_accv2012finalpaper.pdf http://creativecommons.org/licenses/by-nc-nd/4.0/ Research Collection School Of Computing and Information Systems eng Institutional Knowledge at Singapore Management University Human action recognition Spatial-Temporal Interest Point Normalized Google-Like Distance Computer Engineering Software Engineering |
institution |
Singapore Management University |
building |
SMU Libraries |
continent |
Asia |
country |
Singapore Singapore |
content_provider |
SMU Libraries |
collection |
InK@SMU |
language |
English |
topic |
Human action recognition Spatial-Temporal Interest Point Normalized Google-Like Distance Computer Engineering Software Engineering |
spellingShingle |
Human action recognition Spatial-Temporal Interest Point Normalized Google-Like Distance Computer Engineering Software Engineering SUN, Qianru LIU, Hong Action disambiguation analysis using normalized google-like distance correlogram |
description |
Classifying realistic human actions in video remains challenging for existing intro-variability and inter-ambiguity in action classes. Recently, Spatial-Temporal Interest Point (STIP) based local features have shown great promise in complex action analysis. However, these methods have the limitation that they typically focus on Bag-of-Words (BoW) algorithm, which can hardly discriminate actions’ ambiguity due to ignoring of spatial-temporal occurrence relations of visual words. In this paper, we propose a new model to capture this contextual relationship in terms of pairwise features’ co-occurrence. Normalized Google-Like Distance (NGLD) is proposed to numerically measuring this co-occurrence, due to its effectiveness in semantic correlation analysis. All pairwise distances compose a NGLD correlogram and its normalized form is incorporated into the final action representation. It is proved a much richer descriptor by observably reducing action ambiguity in experiments, conducted on WEIZMANN dataset and the more challenging UCF sports. Results also demonstrate the proposed model is more effective and robust than BoW on different setups. |
format |
text |
author |
SUN, Qianru LIU, Hong |
author_facet |
SUN, Qianru LIU, Hong |
author_sort |
SUN, Qianru |
title |
Action disambiguation analysis using normalized google-like distance correlogram |
title_short |
Action disambiguation analysis using normalized google-like distance correlogram |
title_full |
Action disambiguation analysis using normalized google-like distance correlogram |
title_fullStr |
Action disambiguation analysis using normalized google-like distance correlogram |
title_full_unstemmed |
Action disambiguation analysis using normalized google-like distance correlogram |
title_sort |
action disambiguation analysis using normalized google-like distance correlogram |
publisher |
Institutional Knowledge at Singapore Management University |
publishDate |
2012 |
url |
https://ink.library.smu.edu.sg/sis_research/4467 https://ink.library.smu.edu.sg/context/sis_research/article/5470/viewcontent/116_accv2012finalpaper.pdf |
_version_ |
1770574847732088832 |