Evaluating vulnerability to fake news in social networks: A community health assessment model
Understanding the spread of false information in social networks has gained a lot of recent attention. In this paper, we explore the role community structures play in determining how people get exposed to fake news. Inspired by approaches in epidemiology, we propose a novel Community Health Assessme...
Saved in:
Main Authors: | , , |
---|---|
Format: | text |
Language: | English |
Published: |
Institutional Knowledge at Singapore Management University
2019
|
Subjects: | |
Online Access: | https://ink.library.smu.edu.sg/sis_research/4556 https://ink.library.smu.edu.sg/context/sis_research/article/5559/viewcontent/3341161.3342920.pdf |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Singapore Management University |
Language: | English |
Summary: | Understanding the spread of false information in social networks has gained a lot of recent attention. In this paper, we explore the role community structures play in determining how people get exposed to fake news. Inspired by approaches in epidemiology, we propose a novel Community Health Assessment model, whose goal is to understand the vulnerability of communities to fake news spread. We define the concepts of neighbor, boundary and core nodes of a community and propose appropriate metrics to quantify the vulnerability of nodes (individual-level) and communities (group-level) to spreading fake news. We evaluate our model on communities identified using three popular community detection algorithms for twelve real-world news spreading networks collected from Twitter. Experimental results show that the proposed metrics perform significantly better on the fake news spreading networks than on the true news, indicating that our community health assessment model is effective. |
---|