Detect rumors in microblog posts using propagation structure via kernel learning

How fake news goes viral via social media? How does its propagation pattern differ from real stories? In this paper, we attempt to address the problem of identifying rumors, i.e., fake information, out of microblog posts based on their propagation structure. We firstly model microblog posts diffusio...

全面介紹

Saved in:
書目詳細資料
Main Authors: MA, Jing, GAO, Wei, WONG, Kam-Fai
格式: text
語言:English
出版: Institutional Knowledge at Singapore Management University 2017
主題:
在線閱讀:https://ink.library.smu.edu.sg/sis_research/4563
https://ink.library.smu.edu.sg/context/sis_research/article/5566/viewcontent/P17_1066.pdf
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
機構: Singapore Management University
語言: English
實物特徵
總結:How fake news goes viral via social media? How does its propagation pattern differ from real stories? In this paper, we attempt to address the problem of identifying rumors, i.e., fake information, out of microblog posts based on their propagation structure. We firstly model microblog posts diffusion with propagation trees, which provide valuable clues on how an original message is transmitted and developed over time. We then propose a kernel-based method called Propagation Tree Kernel, which captures high-order patterns differentiating different types of rumors by evaluating the similarities between their propagation tree structures. Experimental results on two real-world datasets demonstrate that the proposed kernel-based approach can detect rumors more quickly and accurately than state-ofthe-art rumor detection models.