An empirical study on uncertainty identification in social media context
Uncertainty text detection is important to many social-media-based applications since more and more users utilize social media platforms (e.g., Twitter, Facebook, etc.) as information source to produce or derive interpretations based on them. However, existing uncertainty cues are ineffective in soc...
Saved in:
Main Authors: | , , , , , , |
---|---|
Format: | text |
Language: | English |
Published: |
Institutional Knowledge at Singapore Management University
2013
|
Subjects: | |
Online Access: | https://ink.library.smu.edu.sg/sis_research/4584 https://ink.library.smu.edu.sg/context/sis_research/article/5587/viewcontent/P13_2011.pdf |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Singapore Management University |
Language: | English |
Summary: | Uncertainty text detection is important to many social-media-based applications since more and more users utilize social media platforms (e.g., Twitter, Facebook, etc.) as information source to produce or derive interpretations based on them. However, existing uncertainty cues are ineffective in social media context because of its specific characteristics. In this paper, we propose a variant of annotation scheme for uncertainty identification and construct the first uncertainty corpus based on tweets. We then conduct experiments on the generated tweets corpus to study the effectiveness of different types of features for uncertainty text identification. |
---|