Query weighting for ranking model adaptation
We propose to directly measure the importance of queries in the source domain to the target domain where no rank labels of documents are available, which is referred to as query weighting. Query weighting is a key step in ranking model adaptation. As the learning object of ranking algorithms is divi...
Saved in:
Main Authors: | , , , |
---|---|
Format: | text |
Language: | English |
Published: |
Institutional Knowledge at Singapore Management University
2011
|
Subjects: | |
Online Access: | https://ink.library.smu.edu.sg/sis_research/4595 https://ink.library.smu.edu.sg/context/sis_research/article/5598/viewcontent/P11_1012.pdf |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Singapore Management University |
Language: | English |
id |
sg-smu-ink.sis_research-5598 |
---|---|
record_format |
dspace |
spelling |
sg-smu-ink.sis_research-55982019-12-26T07:47:14Z Query weighting for ranking model adaptation CAI, Peng GAO, Wei ZHOU, Aoying WONG, Kam-Fai We propose to directly measure the importance of queries in the source domain to the target domain where no rank labels of documents are available, which is referred to as query weighting. Query weighting is a key step in ranking model adaptation. As the learning object of ranking algorithms is divided by query instances, we argue that it’s more reasonable to conduct importance weighting at query level than document level. We present two query weighting schemes. The first compresses the query into a query feature vector, which aggregates all document instances in the same query, and then conducts query weighting based on the query feature vector. This method can efficiently estimate query importance by compressing query data, but the potential risk is information loss resulted from the compression. The second measures the similarity between the source query and each target query, and then combines these fine-grained similarity values for its importance estimation. Adaptation experiments on LETOR3.0 data set demonstrate that query weighting significantly outperforms document instance weighting methods. 2011-06-01T07:00:00Z text application/pdf https://ink.library.smu.edu.sg/sis_research/4595 https://ink.library.smu.edu.sg/context/sis_research/article/5598/viewcontent/P11_1012.pdf http://creativecommons.org/licenses/by-nc-nd/4.0/ Research Collection School Of Computing and Information Systems eng Institutional Knowledge at Singapore Management University Databases and Information Systems |
institution |
Singapore Management University |
building |
SMU Libraries |
continent |
Asia |
country |
Singapore Singapore |
content_provider |
SMU Libraries |
collection |
InK@SMU |
language |
English |
topic |
Databases and Information Systems |
spellingShingle |
Databases and Information Systems CAI, Peng GAO, Wei ZHOU, Aoying WONG, Kam-Fai Query weighting for ranking model adaptation |
description |
We propose to directly measure the importance of queries in the source domain to the target domain where no rank labels of documents are available, which is referred to as query weighting. Query weighting is a key step in ranking model adaptation. As the learning object of ranking algorithms is divided by query instances, we argue that it’s more reasonable to conduct importance weighting at query level than document level. We present two query weighting schemes. The first compresses the query into a query feature vector, which aggregates all document instances in the same query, and then conducts query weighting based on the query feature vector. This method can efficiently estimate query importance by compressing query data, but the potential risk is information loss resulted from the compression. The second measures the similarity between the source query and each target query, and then combines these fine-grained similarity values for its importance estimation. Adaptation experiments on LETOR3.0 data set demonstrate that query weighting significantly outperforms document instance weighting methods. |
format |
text |
author |
CAI, Peng GAO, Wei ZHOU, Aoying WONG, Kam-Fai |
author_facet |
CAI, Peng GAO, Wei ZHOU, Aoying WONG, Kam-Fai |
author_sort |
CAI, Peng |
title |
Query weighting for ranking model adaptation |
title_short |
Query weighting for ranking model adaptation |
title_full |
Query weighting for ranking model adaptation |
title_fullStr |
Query weighting for ranking model adaptation |
title_full_unstemmed |
Query weighting for ranking model adaptation |
title_sort |
query weighting for ranking model adaptation |
publisher |
Institutional Knowledge at Singapore Management University |
publishDate |
2011 |
url |
https://ink.library.smu.edu.sg/sis_research/4595 https://ink.library.smu.edu.sg/context/sis_research/article/5598/viewcontent/P11_1012.pdf |
_version_ |
1770574925206126592 |