Natural document clustering by clique percolation in random graphs

Document clustering techniques mostly depend on models that impose explicit and/or implicit priori assumptions as to the number, size, disjunction characteristics of clusters, and/or the probability distribution of clustered data. As a result, the clustering effects tend to be unnatural and stray aw...

全面介紹

Saved in:
書目詳細資料
Main Authors: GAO, Wei, WONG, Kam-Fai
格式: text
語言:English
出版: Institutional Knowledge at Singapore Management University 2006
主題:
在線閱讀:https://ink.library.smu.edu.sg/sis_research/4603
https://ink.library.smu.edu.sg/context/sis_research/article/5606/viewcontent/Gao_Wong2006_Chapter_NaturalDocumentClusteringByCli.pdf
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
機構: Singapore Management University
語言: English
實物特徵
總結:Document clustering techniques mostly depend on models that impose explicit and/or implicit priori assumptions as to the number, size, disjunction characteristics of clusters, and/or the probability distribution of clustered data. As a result, the clustering effects tend to be unnatural and stray away more or less from the intrinsic grouping nature among the documents in a corpus. We propose a novel graph-theoretic technique called Clique Percolation Clustering (CPC). It models clustering as a process of enumerating adjacent maximal cliques in a random graph that unveils inherent structure of the underlying data, in which we unleash the commonly practiced constraints in order to discover natural overlapping clusters. Experiments show that CPC can outperform some typical algorithms on benchmark data sets, and shed light on natural document clustering.