Tracking sentiment and topic dynamics from social media

We propose a dynamic joint sentiment-topic model (dJST) which allows the detection and tracking of views of current and recurrent interests and shifts in topic and sentiment. Both topic and sentiment dynamics are captured by assuming that the current sentiment-topic specific word distributions are g...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلفون الرئيسيون: HE, Yulan, LIN, Chenghua, GAO, Wei, WONG, Kam-Fai
التنسيق: text
اللغة:English
منشور في: Institutional Knowledge at Singapore Management University 2012
الموضوعات:
الوصول للمادة أونلاين:https://ink.library.smu.edu.sg/sis_research/4611
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
المؤسسة: Singapore Management University
اللغة: English
الوصف
الملخص:We propose a dynamic joint sentiment-topic model (dJST) which allows the detection and tracking of views of current and recurrent interests and shifts in topic and sentiment. Both topic and sentiment dynamics are captured by assuming that the current sentiment-topic specific word distributions are generated according to the word distributions at previous epochs. We derive efficient online inference procedures to sequentially update the model with newly arrived data and show the effectiveness of our proposed model on the Mozilla add-on reviews crawled between 2007 and 2011.