White-box fairness testing through adversarial sampling
Although deep neural networks (DNNs) have demonstrated astonishing performance in many applications, there are still concerns on their dependability. One desirable property of DNN for applications with societal impact is fairness (i.e., non-discrimination). In this work, we propose a scalable approa...
محفوظ في:
المؤلفون الرئيسيون: | ZHANG, Peixin, WANG, Jingyi, SUN, Jun, DONG, Guoliang, WANG, Xinyu, WANG, Xingen, DONG, Jin Song, TING, Dai |
---|---|
التنسيق: | text |
اللغة: | English |
منشور في: |
Institutional Knowledge at Singapore Management University
2020
|
الموضوعات: | |
الوصول للمادة أونلاين: | https://ink.library.smu.edu.sg/sis_research/4632 https://ink.library.smu.edu.sg/context/sis_research/article/5635/viewcontent/0_main.pdf |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
مواد مشابهة
-
Automatic fairness testing of neural classifiers through adversarial sampling
بواسطة: ZHANG, Peixin, وآخرون
منشور في: (2021) -
Adversarial sample detection for deep neural network through model mutation testing
بواسطة: WANG, Jingyi, وآخرون
منشور في: (2019) -
Towards interpreting recurrent neural networks through probabilistic abstraction
بواسطة: DONG, Guoliang, وآخرون
منشور في: (2020) -
Efficient white-box fairness testing through gradient search
بواسطة: ZHANG, Lingfeng, وآخرون
منشور في: (2021) -
Amora: Black-box adversarial morphing attack
بواسطة: WANG, Run, وآخرون
منشور في: (2020)