On the sequential massart algorithm for statistical model checking
Several schemes have been provided in Statistical Model Checking (SMC) for the estimation of property occurrence based on predefined confidence and absolute or relative error. Simulations might be however costly if many samples are required and the usual algorithms implemented in statistical model c...
Saved in:
Main Authors: | , , |
---|---|
Format: | text |
Language: | English |
Published: |
Institutional Knowledge at Singapore Management University
2018
|
Subjects: | |
Online Access: | https://ink.library.smu.edu.sg/sis_research/4653 https://ink.library.smu.edu.sg/context/sis_research/article/5656/viewcontent/ON_THE_SEQUENTIAL.pdf |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Singapore Management University |
Language: | English |
id |
sg-smu-ink.sis_research-5656 |
---|---|
record_format |
dspace |
spelling |
sg-smu-ink.sis_research-56562023-08-03T14:05:49Z On the sequential massart algorithm for statistical model checking JEGOUREL, Cyrille SUN, Jun DONG, Jin Song Several schemes have been provided in Statistical Model Checking (SMC) for the estimation of property occurrence based on predefined confidence and absolute or relative error. Simulations might be however costly if many samples are required and the usual algorithms implemented in statistical model checkers tend to be conservative. Bayesian and rare event techniques can be used to reduce the sample size but they can not be applied without prerequisite or knowledge about the system under scrutiny. Recently, sequential algorithms based on Monte Carlo estimations and Massart bounds have been proposed to reduce the sample size while providing guarantees on error bounds which has been shown to outperform alternative frequentist approaches [15]. In this work, we discuss some features regarding the distribution and the optimisationof these algorithms. 2018-11-01T07:00:00Z text application/pdf https://ink.library.smu.edu.sg/sis_research/4653 info:doi/10.1007/978-3-030-03421-4_19 https://ink.library.smu.edu.sg/context/sis_research/article/5656/viewcontent/ON_THE_SEQUENTIAL.pdf http://creativecommons.org/licenses/by-nc-nd/4.0/ Research Collection School Of Computing and Information Systems eng Institutional Knowledge at Singapore Management University Error analysis formal methods Software Engineering Theory and Algorithms |
institution |
Singapore Management University |
building |
SMU Libraries |
continent |
Asia |
country |
Singapore Singapore |
content_provider |
SMU Libraries |
collection |
InK@SMU |
language |
English |
topic |
Error analysis formal methods Software Engineering Theory and Algorithms |
spellingShingle |
Error analysis formal methods Software Engineering Theory and Algorithms JEGOUREL, Cyrille SUN, Jun DONG, Jin Song On the sequential massart algorithm for statistical model checking |
description |
Several schemes have been provided in Statistical Model Checking (SMC) for the estimation of property occurrence based on predefined confidence and absolute or relative error. Simulations might be however costly if many samples are required and the usual algorithms implemented in statistical model checkers tend to be conservative. Bayesian and rare event techniques can be used to reduce the sample size but they can not be applied without prerequisite or knowledge about the system under scrutiny. Recently, sequential algorithms based on Monte Carlo estimations and Massart bounds have been proposed to reduce the sample size while providing guarantees on error bounds which has been shown to outperform alternative frequentist approaches [15]. In this work, we discuss some features regarding the distribution and the optimisationof these algorithms. |
format |
text |
author |
JEGOUREL, Cyrille SUN, Jun DONG, Jin Song |
author_facet |
JEGOUREL, Cyrille SUN, Jun DONG, Jin Song |
author_sort |
JEGOUREL, Cyrille |
title |
On the sequential massart algorithm for statistical model checking |
title_short |
On the sequential massart algorithm for statistical model checking |
title_full |
On the sequential massart algorithm for statistical model checking |
title_fullStr |
On the sequential massart algorithm for statistical model checking |
title_full_unstemmed |
On the sequential massart algorithm for statistical model checking |
title_sort |
on the sequential massart algorithm for statistical model checking |
publisher |
Institutional Knowledge at Singapore Management University |
publishDate |
2018 |
url |
https://ink.library.smu.edu.sg/sis_research/4653 https://ink.library.smu.edu.sg/context/sis_research/article/5656/viewcontent/ON_THE_SEQUENTIAL.pdf |
_version_ |
1773551428269244416 |