Using abstractions to solve opportunistic crime security games at scale
In this paper, we aim to deter urban crime by recommending optimal police patrol strategies against opportunistic criminals in large scale urban problems. While previous work has tried to learn criminals' behavior from real world data and generate patrol strategies against opportunistic crimes,...
محفوظ في:
المؤلفون الرئيسيون: | ZHANG, Chao, BUCAREY, Victor, MUKHOPADHYAY, Ayan, SINHA, Arunesh, QIAN. Yundi, VOROBEYCHIK, Yevgeniy, TAMBE, Milind |
---|---|
التنسيق: | text |
اللغة: | English |
منشور في: |
Institutional Knowledge at Singapore Management University
2016
|
الموضوعات: | |
الوصول للمادة أونلاين: | https://ink.library.smu.edu.sg/sis_research/4659 https://ink.library.smu.edu.sg/context/sis_research/article/5662/viewcontent/abstract_game_1_.pdf |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
المؤسسة: | Singapore Management University |
اللغة: | English |
مواد مشابهة
-
Keeping pace with criminals: Designing patrol allocation against adaptive opportunistic criminals
بواسطة: ZHANG, Chao, وآخرون
منشور في: (2015) -
Learning adversary behavior in security games: A PAC model perspective
بواسطة: SINHA, Arunesh, وآخرون
منشور في: (2016) -
Scaling-up stackelberg security games applications using approximations
بواسطة: SINHA, Arunesh, وآخرون
منشور في: (2018) -
Stackelberg security games: Looking beyond a decade of success
بواسطة: SINHA, Arunesh, وآخرون
منشور في: (2018) -
Get me to my GATE on time: Efficiently solving general-sum bayesian threat screening games
بواسطة: SCHLENKER, Aaron, وآخرون
منشور في: (2016)