Improving law enforcement daily deployment through machine learning-informed optimization under uncertainty

Urban law enforcement agencies are under great pressure to respond to emergency incidents effectively while operating within restricted budgets. Minutes saved on emergency response times can save lives and catch criminals, and a responsive police force can deter crime and bring peace of mind to citi...

Full description

Saved in:
Bibliographic Details
Main Authors: CHASE, Jonathan David, NGUYEN, Duc Thien, SUN, Haiyang, LAU, Hoong Chuin
Format: text
Language:English
Published: Institutional Knowledge at Singapore Management University 2019
Subjects:
Online Access:https://ink.library.smu.edu.sg/sis_research/4682
https://ink.library.smu.edu.sg/context/sis_research/article/5685/viewcontent/Law_Enforcement_Daily_Deployment_IJCAI_2019_pv.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Singapore Management University
Language: English
id sg-smu-ink.sis_research-5685
record_format dspace
spelling sg-smu-ink.sis_research-56852021-06-07T06:18:12Z Improving law enforcement daily deployment through machine learning-informed optimization under uncertainty CHASE, Jonathan David NGUYEN, Duc Thien SUN, Haiyang LAU, Hoong Chuin Urban law enforcement agencies are under great pressure to respond to emergency incidents effectively while operating within restricted budgets. Minutes saved on emergency response times can save lives and catch criminals, and a responsive police force can deter crime and bring peace of mind to citizens. To efficiently minimize the response times of a law enforcement agency operating in a dense urban environment with limited manpower, we consider in this paper the problem of optimizing the spatial and temporal deployment of law enforcement agents to predefined patrol regions in a real-world scenario informed by machine learning. To this end, we develop a mixed integer linear optimization formulation (MIP) to minimize the risk of failing response time targets. Given the stochasticity of the environment in terms of incident numbers, location, timing, and duration, we use Sample Average Approximation (SAA) to find a robust deployment plan. To overcome the sparsity of real data, samples are provided by an incident generator that learns the spatio-temporal distribution and demand parameters of incidents from a real world historical dataset and generates sets of training incidents accordingly. To improve runtime performance across multiple samples, we implement a heuristic based on Iterated Local Search (ILS), as the solution is intended to create deployment plans quickly on a daily basis. Experimental results demonstrate that ILS performs well against the integer model while offering substantial gains in execution time. 2019-08-01T07:00:00Z text application/pdf https://ink.library.smu.edu.sg/sis_research/4682 info:doi/10.24963/ijcai.2019/806 https://ink.library.smu.edu.sg/context/sis_research/article/5685/viewcontent/Law_Enforcement_Daily_Deployment_IJCAI_2019_pv.pdf http://creativecommons.org/licenses/by-nc-nd/4.0/ Research Collection School Of Computing and Information Systems eng Institutional Knowledge at Singapore Management University Law enforcement response time police deployment MITB student Computer Sciences Law Enforcement and Corrections Operations Research, Systems Engineering and Industrial Engineering
institution Singapore Management University
building SMU Libraries
continent Asia
country Singapore
Singapore
content_provider SMU Libraries
collection InK@SMU
language English
topic Law enforcement
response time
police
deployment
MITB student
Computer Sciences
Law Enforcement and Corrections
Operations Research, Systems Engineering and Industrial Engineering
spellingShingle Law enforcement
response time
police
deployment
MITB student
Computer Sciences
Law Enforcement and Corrections
Operations Research, Systems Engineering and Industrial Engineering
CHASE, Jonathan David
NGUYEN, Duc Thien
SUN, Haiyang
LAU, Hoong Chuin
Improving law enforcement daily deployment through machine learning-informed optimization under uncertainty
description Urban law enforcement agencies are under great pressure to respond to emergency incidents effectively while operating within restricted budgets. Minutes saved on emergency response times can save lives and catch criminals, and a responsive police force can deter crime and bring peace of mind to citizens. To efficiently minimize the response times of a law enforcement agency operating in a dense urban environment with limited manpower, we consider in this paper the problem of optimizing the spatial and temporal deployment of law enforcement agents to predefined patrol regions in a real-world scenario informed by machine learning. To this end, we develop a mixed integer linear optimization formulation (MIP) to minimize the risk of failing response time targets. Given the stochasticity of the environment in terms of incident numbers, location, timing, and duration, we use Sample Average Approximation (SAA) to find a robust deployment plan. To overcome the sparsity of real data, samples are provided by an incident generator that learns the spatio-temporal distribution and demand parameters of incidents from a real world historical dataset and generates sets of training incidents accordingly. To improve runtime performance across multiple samples, we implement a heuristic based on Iterated Local Search (ILS), as the solution is intended to create deployment plans quickly on a daily basis. Experimental results demonstrate that ILS performs well against the integer model while offering substantial gains in execution time.
format text
author CHASE, Jonathan David
NGUYEN, Duc Thien
SUN, Haiyang
LAU, Hoong Chuin
author_facet CHASE, Jonathan David
NGUYEN, Duc Thien
SUN, Haiyang
LAU, Hoong Chuin
author_sort CHASE, Jonathan David
title Improving law enforcement daily deployment through machine learning-informed optimization under uncertainty
title_short Improving law enforcement daily deployment through machine learning-informed optimization under uncertainty
title_full Improving law enforcement daily deployment through machine learning-informed optimization under uncertainty
title_fullStr Improving law enforcement daily deployment through machine learning-informed optimization under uncertainty
title_full_unstemmed Improving law enforcement daily deployment through machine learning-informed optimization under uncertainty
title_sort improving law enforcement daily deployment through machine learning-informed optimization under uncertainty
publisher Institutional Knowledge at Singapore Management University
publishDate 2019
url https://ink.library.smu.edu.sg/sis_research/4682
https://ink.library.smu.edu.sg/context/sis_research/article/5685/viewcontent/Law_Enforcement_Daily_Deployment_IJCAI_2019_pv.pdf
_version_ 1770574964627341312