Adversarial contract design for private data commercialization

The proliferation of data collection and machine learning techniques has created an opportunity for commercialization of private data by data aggregators. In this paper, we study this data monetization problem as a mechanism design problem, specifically using a contract-theoretic approach. Our propo...

全面介紹

Saved in:
書目詳細資料
Main Authors: NAGHIZADEH, Parinaz, SINHA, Arunesh
格式: text
語言:English
出版: Institutional Knowledge at Singapore Management University 2019
主題:
在線閱讀:https://ink.library.smu.edu.sg/sis_research/4797
https://ink.library.smu.edu.sg/context/sis_research/article/5800/viewcontent/ec305_naghizadehA_1_.pdf
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
機構: Singapore Management University
語言: English
實物特徵
總結:The proliferation of data collection and machine learning techniques has created an opportunity for commercialization of private data by data aggregators. In this paper, we study this data monetization problem as a mechanism design problem, specifically using a contract-theoretic approach. Our proposed adversarial contract design framework provides a fundamental extension to the classic contract theory set-up in order to account for the heterogeneity in honest buyers’ demands for data, as well as the presence of adversarial buyers who may purchase data to compromise its privacy. We propose the notion of Price of Adversary (PoAdv) to quantify the effects of adversarial users on the data seller’s revenue, and provide bounds on the PoAdv for various classes of adversary utility. We also provide a fast approximate technique to compute contracts in the presence of adversaries.