BING: Binarized normed gradients for objectness estimation at 300fps
Training a generic objectness measure to produce object proposals has recently become of significant interest. We observe that generic objects with well-defined closed boundaries can be detected by looking at the norm of gradients, with a suitable resizing of their corresponding image windows to a s...
Saved in:
Main Authors: | , , , , , |
---|---|
Format: | text |
Language: | English |
Published: |
Institutional Knowledge at Singapore Management University
2019
|
Subjects: | |
Online Access: | https://ink.library.smu.edu.sg/sis_research/4802 https://ink.library.smu.edu.sg/context/sis_research/article/5805/viewcontent/ObjectnessBING_pv.pdf |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Singapore Management University |
Language: | English |
Summary: | Training a generic objectness measure to produce object proposals has recently become of significant interest. We observe that generic objects with well-defined closed boundaries can be detected by looking at the norm of gradients, with a suitable resizing of their corresponding image windows to a small fixed size. Based on this observation and computational reasons, we propose to resize the window to 8 × 8 and use the norm of the gradients as a simple 64D feature to describe it, for explicitly training a generic objectness measure. We further show how the binarized version of this feature, namely binarized normed gradients (BING), can be used for efficient objectness estimation, which requires only a few atomic operations (e.g., add, bitwise shift, etc.). To improve localization quality of the proposals while maintaining efficiency, we propose a novel fast segmentation method and demonstrate its effectiveness for improving BING’s localization performance, when used in multi-thresholding straddling expansion (MTSE) post-processing. On the challenging PASCAL VOC2007 dataset, using 1000 proposals per image and intersection-over-union threshold of 0.5, our proposal method achieves a 95.6% object detection rate and 78.6% mean average best overlap in less than 0.005 second per image. |
---|