Aligning images in the wild
Aligning image pairs with significant appearance change is a long standing computer vision challenge. Much of this problem stems from the local patch descriptors’ instability to appearance variation. In this paper we suggest this instability is due less to descriptor corruption and more the difficul...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | text |
Language: | English |
Published: |
Institutional Knowledge at Singapore Management University
2012
|
Subjects: | |
Online Access: | https://ink.library.smu.edu.sg/sis_research/4807 https://ink.library.smu.edu.sg/context/sis_research/article/5810/viewcontent/10.1.1.227.4441.pdf |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Singapore Management University |
Language: | English |
id |
sg-smu-ink.sis_research-5810 |
---|---|
record_format |
dspace |
spelling |
sg-smu-ink.sis_research-58102020-01-16T10:04:17Z Aligning images in the wild LIN, Wen-yan LIU, Linlin MATSUSHITA, Yasuyuki LOW, Kok-Lim LIU, Siying Aligning image pairs with significant appearance change is a long standing computer vision challenge. Much of this problem stems from the local patch descriptors’ instability to appearance variation. In this paper we suggest this instability is due less to descriptor corruption and more the difficulty in utilizing local information to canonically define the orientation (scale and rotation) at which a patch’s descriptor should be computed. We address this issue by jointly estimating correspondence and relative patch orientation, within a hierarchical algorithm that utilizes a smoothly varying parameterization of geometric transformations. By collectively estimating the correspondence and orientation of all the features, we can align and orient features that cannot be stably matched with only local information. At the price of smoothing over motion discontinuities (due to independent motion or parallax), this approach can align image pairs that display significant inter-image appearance variations. 2012-06-01T07:00:00Z text application/pdf https://ink.library.smu.edu.sg/sis_research/4807 info:doi/10.1109/CVPR.2012.6247651 https://ink.library.smu.edu.sg/context/sis_research/article/5810/viewcontent/10.1.1.227.4441.pdf http://creativecommons.org/licenses/by-nc-nd/4.0/ Research Collection School Of Computing and Information Systems eng Institutional Knowledge at Singapore Management University Graphics and Human Computer Interfaces Programming Languages and Compilers |
institution |
Singapore Management University |
building |
SMU Libraries |
continent |
Asia |
country |
Singapore Singapore |
content_provider |
SMU Libraries |
collection |
InK@SMU |
language |
English |
topic |
Graphics and Human Computer Interfaces Programming Languages and Compilers |
spellingShingle |
Graphics and Human Computer Interfaces Programming Languages and Compilers LIN, Wen-yan LIU, Linlin MATSUSHITA, Yasuyuki LOW, Kok-Lim LIU, Siying Aligning images in the wild |
description |
Aligning image pairs with significant appearance change is a long standing computer vision challenge. Much of this problem stems from the local patch descriptors’ instability to appearance variation. In this paper we suggest this instability is due less to descriptor corruption and more the difficulty in utilizing local information to canonically define the orientation (scale and rotation) at which a patch’s descriptor should be computed. We address this issue by jointly estimating correspondence and relative patch orientation, within a hierarchical algorithm that utilizes a smoothly varying parameterization of geometric transformations. By collectively estimating the correspondence and orientation of all the features, we can align and orient features that cannot be stably matched with only local information. At the price of smoothing over motion discontinuities (due to independent motion or parallax), this approach can align image pairs that display significant inter-image appearance variations. |
format |
text |
author |
LIN, Wen-yan LIU, Linlin MATSUSHITA, Yasuyuki LOW, Kok-Lim LIU, Siying |
author_facet |
LIN, Wen-yan LIU, Linlin MATSUSHITA, Yasuyuki LOW, Kok-Lim LIU, Siying |
author_sort |
LIN, Wen-yan |
title |
Aligning images in the wild |
title_short |
Aligning images in the wild |
title_full |
Aligning images in the wild |
title_fullStr |
Aligning images in the wild |
title_full_unstemmed |
Aligning images in the wild |
title_sort |
aligning images in the wild |
publisher |
Institutional Knowledge at Singapore Management University |
publishDate |
2012 |
url |
https://ink.library.smu.edu.sg/sis_research/4807 https://ink.library.smu.edu.sg/context/sis_research/article/5810/viewcontent/10.1.1.227.4441.pdf |
_version_ |
1770575051889836032 |