Robust non-parametric data fitting for correspondence modeling

We propose a generic method for obtaining nonparametric image warps from noisy point correspondences. Our formulation integrates a huber function into a motion coherence framework. This makes our fitting function especially robust to piecewise correspondence noise (where an image section is consiste...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلفون الرئيسيون: LIN, Wen-yan, CHENG, Ming-Ming, ZHENG, Shuai, LU, Jiangbo, CROOK, Nigel
التنسيق: text
اللغة:English
منشور في: Institutional Knowledge at Singapore Management University 2013
الموضوعات:
الوصول للمادة أونلاين:https://ink.library.smu.edu.sg/sis_research/4809
https://ink.library.smu.edu.sg/context/sis_research/article/5812/viewcontent/DataFittingICCV13.pdf
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
المؤسسة: Singapore Management University
اللغة: English
الوصف
الملخص:We propose a generic method for obtaining nonparametric image warps from noisy point correspondences. Our formulation integrates a huber function into a motion coherence framework. This makes our fitting function especially robust to piecewise correspondence noise (where an image section is consistently mismatched). By utilizing over parameterized curves, we can generate realistic nonparametric image warps from very noisy correspondence. We also demonstrate how our algorithm can be used to help stitch images taken from a panning camera by warping the images onto a virtual push-broom camera imaging plane.