Supervised generative adversarial cross-modal hashing by transferring pairwise similarities for venue discovery
Venue discovery using real-world multimedia data has not been investigated thoroughly. We are referring to business and travel locations as venues in this study and aim to improve the efficiency of venue discovery by hashing. Most existing supervised cross-modal hashing methods map data in different...
Saved in:
Main Authors: | , , , |
---|---|
Format: | text |
Language: | English |
Published: |
Institutional Knowledge at Singapore Management University
2019
|
Subjects: | |
Online Access: | https://ink.library.smu.edu.sg/sis_research/4840 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Singapore Management University |
Language: | English |
id |
sg-smu-ink.sis_research-5843 |
---|---|
record_format |
dspace |
spelling |
sg-smu-ink.sis_research-58432020-01-16T09:18:03Z Supervised generative adversarial cross-modal hashing by transferring pairwise similarities for venue discovery AGGARWAL, Himanshu SHAH, Rajiv Ratn TANG, Suhua ZHU, Feida Venue discovery using real-world multimedia data has not been investigated thoroughly. We are referring to business and travel locations as venues in this study and aim to improve the efficiency of venue discovery by hashing. Most existing supervised cross-modal hashing methods map data in different modalities to Hamming space, where the semantic information is exploited to supervise data of different modalities during the training stage. However, previous works neglect pairwise similarity between data in different modalities, which lead to degraded performance of hashing function learning. To address this issue, we propose a supervised Generative Adversarial Cross-modal Hashing method by Transferring Pairwise Similarities (SGACH-TPS). This work has three significant contributions: i) we propose a model for making efficient venue discovery, ii) the supervised generative adversarial network can construct a hash function to map multimodal data to a common hamming space. iii) a simple transfer training strategy for the adversarial network is suggested to supervise data in different modalities where the pairwise similarity is transferred to the fine-tuning stage of training. Evaluation on the new WikiVenue dataset confirms the superiority of the proposed method. 2019-09-11T07:00:00Z text https://ink.library.smu.edu.sg/sis_research/4840 info:doi/10.1109/BigMM.2019.000-2 Research Collection School Of Computing and Information Systems eng Institutional Knowledge at Singapore Management University Theory and Algorithms |
institution |
Singapore Management University |
building |
SMU Libraries |
continent |
Asia |
country |
Singapore Singapore |
content_provider |
SMU Libraries |
collection |
InK@SMU |
language |
English |
topic |
Theory and Algorithms |
spellingShingle |
Theory and Algorithms AGGARWAL, Himanshu SHAH, Rajiv Ratn TANG, Suhua ZHU, Feida Supervised generative adversarial cross-modal hashing by transferring pairwise similarities for venue discovery |
description |
Venue discovery using real-world multimedia data has not been investigated thoroughly. We are referring to business and travel locations as venues in this study and aim to improve the efficiency of venue discovery by hashing. Most existing supervised cross-modal hashing methods map data in different modalities to Hamming space, where the semantic information is exploited to supervise data of different modalities during the training stage. However, previous works neglect pairwise similarity between data in different modalities, which lead to degraded performance of hashing function learning. To address this issue, we propose a supervised Generative Adversarial Cross-modal Hashing method by Transferring Pairwise Similarities (SGACH-TPS). This work has three significant contributions: i) we propose a model for making efficient venue discovery, ii) the supervised generative adversarial network can construct a hash function to map multimodal data to a common hamming space. iii) a simple transfer training strategy for the adversarial network is suggested to supervise data in different modalities where the pairwise similarity is transferred to the fine-tuning stage of training. Evaluation on the new WikiVenue dataset confirms the superiority of the proposed method. |
format |
text |
author |
AGGARWAL, Himanshu SHAH, Rajiv Ratn TANG, Suhua ZHU, Feida |
author_facet |
AGGARWAL, Himanshu SHAH, Rajiv Ratn TANG, Suhua ZHU, Feida |
author_sort |
AGGARWAL, Himanshu |
title |
Supervised generative adversarial cross-modal hashing by transferring pairwise similarities for venue discovery |
title_short |
Supervised generative adversarial cross-modal hashing by transferring pairwise similarities for venue discovery |
title_full |
Supervised generative adversarial cross-modal hashing by transferring pairwise similarities for venue discovery |
title_fullStr |
Supervised generative adversarial cross-modal hashing by transferring pairwise similarities for venue discovery |
title_full_unstemmed |
Supervised generative adversarial cross-modal hashing by transferring pairwise similarities for venue discovery |
title_sort |
supervised generative adversarial cross-modal hashing by transferring pairwise similarities for venue discovery |
publisher |
Institutional Knowledge at Singapore Management University |
publishDate |
2019 |
url |
https://ink.library.smu.edu.sg/sis_research/4840 |
_version_ |
1770575059842236416 |