Measuring fine-grained metro interchange time via smartphones

High variability interchange times often significantly affect the reliability of metro travels. Fine-grained measurements of interchange times during metro transfers can provide valuable insights on the crowdedness of stations, usage of station facilities and efficiency of metro lines. Measuring int...

Full description

Saved in:
Bibliographic Details
Main Authors: GU, Weixi, ZHANG, Kai, ZHOU, Zimu, JIN, Ming, ZHOU, Yuxun, LIU, Xi, SPANOS, Costas J., SHEN, Zuo-Jun (Max), LIN, Wei-Hua, ZHANG, Lin
Format: text
Language:English
Published: Institutional Knowledge at Singapore Management University 2017
Subjects:
Online Access:https://ink.library.smu.edu.sg/sis_research/4881
https://ink.library.smu.edu.sg/context/sis_research/article/5884/viewcontent/trc17_gu.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Singapore Management University
Language: English
Description
Summary:High variability interchange times often significantly affect the reliability of metro travels. Fine-grained measurements of interchange times during metro transfers can provide valuable insights on the crowdedness of stations, usage of station facilities and efficiency of metro lines. Measuring interchange times in metro systems is challenging since agentoperated systems like automatic fare collection systems only provide coarse-grained trip information and popular localization services like GPS are often inaccessible underground. In this paper, we propose a smartphone-based interchange time measuring method from the passengers’ perspective. It leverages low-power sensors embedded in modern smartphones to record ambient contextual features, and utilizes a two-tier classifier to infer interchange states during a metro trip, and further distinguishes 10 fine-grained cases during interchanges. Experimental results within 6 months across over 14 subway lines in 3 major cities demonstrate that our approach yields an overall interchange state inference F1-measurement of 91.0% and an average time error of less than 2 min at an inference interval of 20 s, and an average accuracy of 89.3% to distinguish the 10 fine-grained interchange cases. We also conducted a series of case studies using measurements collected from crowdsourced users during 3 months, which reveals findings previously unattainable without fine-grained interchange time measurements, such as portions of waiting time during interchange, interchange directions, usage of facilities (stairs/escalators/lifts), and the root causes of long interchange times.