GPU Accelerated counterexample generation in LTL model checking
Strongly Connected Component (SCC) based searching is one of the most popular LTL model checking algorithms. When the SCCs are huge, the counterexample generation process can be time-consuming, especially when dealing with fairness assumptions. In this work, we propose a GPU accelerated counterexamp...
Saved in:
Main Authors: | WU, Zhimin, LIU, Yang, LIANG, Yun, SUN, Jun |
---|---|
格式: | text |
語言: | English |
出版: |
Institutional Knowledge at Singapore Management University
2014
|
主題: | |
在線閱讀: | https://ink.library.smu.edu.sg/sis_research/4988 https://ink.library.smu.edu.sg/context/sis_research/article/5991/viewcontent/gpu.pdf |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
相似書籍
-
Fair model checking with process counter abstraction
由: SUN, Jun, et al.
出版: (2009) -
On combining state space reductions with global fairness assumptions
由: ZHANG, Shao Jie, et al.
出版: (2011) -
Improving model checking stateful timed CSP with non-zenoness through clock-symmetry reduction
由: SI, Yuanjie, et al.
出版: (2013) -
Counterexample generation for probabilistic model checking micro-scale cyber-physical systems
由: Liu, Yang, et al.
出版: (2022) -
Scalable multi-core model checking fairness enhanced systems
由: LIU, Yang, et al.
出版: (2009)