Expediting the accuracy-improving process of SVMs for class imbalance learning
To improve the classification performance of support vector machines (SVMs) on imbalanced datasets, cost-sensitive learning methods have been proposed, e.g., DEC (Different Error Costs) and FSVM-CIL (Fuzzy SVM for Class Imbalance Learning). They relocate the hyperplane by adjusting the costs associa...
محفوظ في:
المؤلفون الرئيسيون: | CAO, Bin, LIU, Yuqi, HOU, Chenyu, FAN, Jing, ZHENG, Baihua, JIN, Jianwei |
---|---|
التنسيق: | text |
اللغة: | English |
منشور في: |
Institutional Knowledge at Singapore Management University
2021
|
الموضوعات: | |
الوصول للمادة أونلاين: | https://ink.library.smu.edu.sg/sis_research/5097 https://ink.library.smu.edu.sg/context/sis_research/article/6100/viewcontent/15._Expediting_the_Accuracy_improving_Process_of_XVMS_of_Class_Imbalance_Learning_TKDEFeb2020.pdf |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
مواد مشابهة
-
Improved kernel methods for classification
بواسطة: DUAN KAIBO
منشور في: (2010) -
Efficient tuning of SVM hyperparameters using radius/margin bound and iterative algorithms
بواسطة: Keerthi, S.S.
منشور في: (2014) -
Using redundancy reduction in summarization to improve text classification by SVMs
بواسطة: Zhan, J., وآخرون
منشور في: (2014) -
Generating an SVM Kernel function using genetic algorithm
بواسطة: IMMER, BALDOS
منشور في: (2012) -
Supervised and unsupervised machine learning for side-channel based Trojan detection
بواسطة: Jap, Dirmanto, وآخرون
منشور في: (2017)