Partially observable multi-sensor sequential change detection: A combinatorial multi-armed bandit approach
This paper explores machine learning to address a problem of Partially Observable Multi-sensor Sequential Change Detection (POMSCD), where only a subset of sensors can be observed to monitor a target system for change-point detection at each online learning round. In contrast to traditional Multisen...
Saved in:
Main Authors: | , |
---|---|
Format: | text |
Language: | English |
Published: |
Institutional Knowledge at Singapore Management University
2019
|
Subjects: | |
Online Access: | https://ink.library.smu.edu.sg/sis_research/5104 https://ink.library.smu.edu.sg/context/sis_research/article/6107/viewcontent/4519_Article_Text_7558_1_10_20190706_pv_oa.pdf |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Singapore Management University |
Language: | English |
id |
sg-smu-ink.sis_research-6107 |
---|---|
record_format |
dspace |
spelling |
sg-smu-ink.sis_research-61072020-04-16T07:09:36Z Partially observable multi-sensor sequential change detection: A combinatorial multi-armed bandit approach ZHANG, Chen HOI, Steven C. H. This paper explores machine learning to address a problem of Partially Observable Multi-sensor Sequential Change Detection (POMSCD), where only a subset of sensors can be observed to monitor a target system for change-point detection at each online learning round. In contrast to traditional Multisensor Sequential Change Detection tasks where all the sensors are observable, POMSCD is much more challenging because the learner not only needs to detect on-the-fly whether a change occurs based on partially observed multi-sensor data streams, but also needs to cleverly choose a subset of informative sensors to be observed in the next learning round, in order to maximize the overall sequential change detection performance. In this paper, we present the first online learning study to tackle POMSCD in a systemic and rigorous way. Our approach has twofold novelties: (i) we attempt to detect changepoints from partial observations effectively by exploiting potential correlations between sensors, and (ii) we formulate the sensor subset selection task as a Multi-Armed Bandit (MAB) problem and develop an effective adaptive sampling strategy using MAB algorithms. We offer theoretical analysis for the proposed online learning solution, and further validate its empirical performance via an extensive set of numerical studies together with a case study on real-world data sets. 2019-02-01T08:00:00Z text application/pdf https://ink.library.smu.edu.sg/sis_research/5104 info:doi/10.1609/aaai.v33i01.33015733 https://ink.library.smu.edu.sg/context/sis_research/article/6107/viewcontent/4519_Article_Text_7558_1_10_20190706_pv_oa.pdf http://creativecommons.org/licenses/by-nc-nd/4.0/ Research Collection School Of Computing and Information Systems eng Institutional Knowledge at Singapore Management University Databases and Information Systems Numerical Analysis and Scientific Computing |
institution |
Singapore Management University |
building |
SMU Libraries |
continent |
Asia |
country |
Singapore Singapore |
content_provider |
SMU Libraries |
collection |
InK@SMU |
language |
English |
topic |
Databases and Information Systems Numerical Analysis and Scientific Computing |
spellingShingle |
Databases and Information Systems Numerical Analysis and Scientific Computing ZHANG, Chen HOI, Steven C. H. Partially observable multi-sensor sequential change detection: A combinatorial multi-armed bandit approach |
description |
This paper explores machine learning to address a problem of Partially Observable Multi-sensor Sequential Change Detection (POMSCD), where only a subset of sensors can be observed to monitor a target system for change-point detection at each online learning round. In contrast to traditional Multisensor Sequential Change Detection tasks where all the sensors are observable, POMSCD is much more challenging because the learner not only needs to detect on-the-fly whether a change occurs based on partially observed multi-sensor data streams, but also needs to cleverly choose a subset of informative sensors to be observed in the next learning round, in order to maximize the overall sequential change detection performance. In this paper, we present the first online learning study to tackle POMSCD in a systemic and rigorous way. Our approach has twofold novelties: (i) we attempt to detect changepoints from partial observations effectively by exploiting potential correlations between sensors, and (ii) we formulate the sensor subset selection task as a Multi-Armed Bandit (MAB) problem and develop an effective adaptive sampling strategy using MAB algorithms. We offer theoretical analysis for the proposed online learning solution, and further validate its empirical performance via an extensive set of numerical studies together with a case study on real-world data sets. |
format |
text |
author |
ZHANG, Chen HOI, Steven C. H. |
author_facet |
ZHANG, Chen HOI, Steven C. H. |
author_sort |
ZHANG, Chen |
title |
Partially observable multi-sensor sequential change detection: A combinatorial multi-armed bandit approach |
title_short |
Partially observable multi-sensor sequential change detection: A combinatorial multi-armed bandit approach |
title_full |
Partially observable multi-sensor sequential change detection: A combinatorial multi-armed bandit approach |
title_fullStr |
Partially observable multi-sensor sequential change detection: A combinatorial multi-armed bandit approach |
title_full_unstemmed |
Partially observable multi-sensor sequential change detection: A combinatorial multi-armed bandit approach |
title_sort |
partially observable multi-sensor sequential change detection: a combinatorial multi-armed bandit approach |
publisher |
Institutional Knowledge at Singapore Management University |
publishDate |
2019 |
url |
https://ink.library.smu.edu.sg/sis_research/5104 https://ink.library.smu.edu.sg/context/sis_research/article/6107/viewcontent/4519_Article_Text_7558_1_10_20190706_pv_oa.pdf |
_version_ |
1770575220893024256 |