A cue adaptive decoder for controllable neural response generation

In open-domain dialogue systems, dialogue cues such as emotion, persona, and emoji can be incorporated into conversation models for strengthening the semantic relevance of generated responses. Existing neural response generation models either incorporate dialogue cue into decoder’s initial state or...

Full description

Saved in:
Bibliographic Details
Main Authors: WANG, Weichao, FENG, Shi, GAO, Wei, WANG, Daling, ZHANG, Yifei
Format: text
Language:English
Published: Institutional Knowledge at Singapore Management University 2020
Subjects:
Online Access:https://ink.library.smu.edu.sg/sis_research/5125
https://ink.library.smu.edu.sg/context/sis_research/article/6128/viewcontent/3366423.3380008.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Singapore Management University
Language: English
Description
Summary:In open-domain dialogue systems, dialogue cues such as emotion, persona, and emoji can be incorporated into conversation models for strengthening the semantic relevance of generated responses. Existing neural response generation models either incorporate dialogue cue into decoder’s initial state or embed the cue indiscriminately into the state of every generated word, which may cause the gradients of the embedded cue to vanish or disturb the semantic relevance of generated words during back propagation. In this paper, we propose a Cue Adaptive Decoder (CueAD) that aims to dynamically determine the involvement of a cue at each generation step in the decoding. For this purpose, we extend the Gated Recurrent Unit (GRU) network with an adaptive cue representation for facilitating cue incorporation, in which an adaptive gating unit is utilized to decide when to incorporate cue information so that the cue can provide useful clues for enhancing the semantic relevance of the generated words. Experimental results show that Cu