Meta-learning on heterogeneous information networks for cold-start recommendation

Cold-start recommendation has been a challenging problem due to sparse user-item interactions for new users or items. Existing efforts have alleviated the cold-start issue to some extent, most of which approach the problem at the data level. Earlier methods often incorporate auxiliary data as user o...

Full description

Saved in:
Bibliographic Details
Main Authors: LU, Yuanfu, FANG, Yuan, SHI, Chuan
Format: text
Language:English
Published: Institutional Knowledge at Singapore Management University 2020
Subjects:
Online Access:https://ink.library.smu.edu.sg/sis_research/5155
https://ink.library.smu.edu.sg/context/sis_research/article/6158/viewcontent/KDD20_MetaHIN.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Singapore Management University
Language: English
id sg-smu-ink.sis_research-6158
record_format dspace
spelling sg-smu-ink.sis_research-61582021-05-24T02:33:54Z Meta-learning on heterogeneous information networks for cold-start recommendation LU, Yuanfu FANG, Yuan SHI, Chuan Cold-start recommendation has been a challenging problem due to sparse user-item interactions for new users or items. Existing efforts have alleviated the cold-start issue to some extent, most of which approach the problem at the data level. Earlier methods often incorporate auxiliary data as user or item features, while more recent methods leverage heterogeneous information networks (HIN) to capture richer semantics via higher-order graph structures. On the other hand, recent meta-learning paradigm sheds light on addressing cold-start recommendation at the model level, given its ability to rapidly adapt to new tasks with scarce labeled data, or in the context of cold-start recommendation, new users and items with very few interactions. Thus, we are inspired to develop a novel meta-learning approach named MetaHIN to address cold-start recommendation on HINs, to exploit the power of meta-learning at the model level and HINs at the data level simultaneously. The solution is non-trivial, for how to capture HIN-based semantics in the metalearning setting, and how to learn the general knowledge that can be easily adapted to multifaceted semantics, remain open questions. In MetaHIN, we propose a novel semantic-enhanced tasks constructor and a co-adaptation meta-learner to address the two questions. Extensive experiments demonstrate that MetaHIN significantly outperforms the state of the arts in various cold-start scenarios. (Code and dataset are available at https://github.com/rootlu/MetaHIN.) 2020-08-01T07:00:00Z text application/pdf https://ink.library.smu.edu.sg/sis_research/5155 info:doi/10.1145/3394486.3403207 https://ink.library.smu.edu.sg/context/sis_research/article/6158/viewcontent/KDD20_MetaHIN.pdf http://creativecommons.org/licenses/by-nc-nd/4.0/ Research Collection School Of Computing and Information Systems eng Institutional Knowledge at Singapore Management University Heterogeneous Information Network Meta-learning Cold-start Recommendation Databases and Information Systems OS and Networks
institution Singapore Management University
building SMU Libraries
continent Asia
country Singapore
Singapore
content_provider SMU Libraries
collection InK@SMU
language English
topic Heterogeneous Information Network
Meta-learning
Cold-start Recommendation
Databases and Information Systems
OS and Networks
spellingShingle Heterogeneous Information Network
Meta-learning
Cold-start Recommendation
Databases and Information Systems
OS and Networks
LU, Yuanfu
FANG, Yuan
SHI, Chuan
Meta-learning on heterogeneous information networks for cold-start recommendation
description Cold-start recommendation has been a challenging problem due to sparse user-item interactions for new users or items. Existing efforts have alleviated the cold-start issue to some extent, most of which approach the problem at the data level. Earlier methods often incorporate auxiliary data as user or item features, while more recent methods leverage heterogeneous information networks (HIN) to capture richer semantics via higher-order graph structures. On the other hand, recent meta-learning paradigm sheds light on addressing cold-start recommendation at the model level, given its ability to rapidly adapt to new tasks with scarce labeled data, or in the context of cold-start recommendation, new users and items with very few interactions. Thus, we are inspired to develop a novel meta-learning approach named MetaHIN to address cold-start recommendation on HINs, to exploit the power of meta-learning at the model level and HINs at the data level simultaneously. The solution is non-trivial, for how to capture HIN-based semantics in the metalearning setting, and how to learn the general knowledge that can be easily adapted to multifaceted semantics, remain open questions. In MetaHIN, we propose a novel semantic-enhanced tasks constructor and a co-adaptation meta-learner to address the two questions. Extensive experiments demonstrate that MetaHIN significantly outperforms the state of the arts in various cold-start scenarios. (Code and dataset are available at https://github.com/rootlu/MetaHIN.)
format text
author LU, Yuanfu
FANG, Yuan
SHI, Chuan
author_facet LU, Yuanfu
FANG, Yuan
SHI, Chuan
author_sort LU, Yuanfu
title Meta-learning on heterogeneous information networks for cold-start recommendation
title_short Meta-learning on heterogeneous information networks for cold-start recommendation
title_full Meta-learning on heterogeneous information networks for cold-start recommendation
title_fullStr Meta-learning on heterogeneous information networks for cold-start recommendation
title_full_unstemmed Meta-learning on heterogeneous information networks for cold-start recommendation
title_sort meta-learning on heterogeneous information networks for cold-start recommendation
publisher Institutional Knowledge at Singapore Management University
publishDate 2020
url https://ink.library.smu.edu.sg/sis_research/5155
https://ink.library.smu.edu.sg/context/sis_research/article/6158/viewcontent/KDD20_MetaHIN.pdf
_version_ 1770575297680244736