Temporal heterogeneous interaction graph embedding for next-item recommendation
In the scenario of next-item recommendation, previous methods attempt to model user preferences by capturing the evolution of sequential interactions. However, their sequential expression is often limited, without modeling complex dynamics that short-term demands can often be influenced by long-term...
Saved in:
Main Authors: | , , , , , , |
---|---|
Format: | text |
Language: | English |
Published: |
Institutional Knowledge at Singapore Management University
2020
|
Subjects: | |
Online Access: | https://ink.library.smu.edu.sg/sis_research/5157 https://ink.library.smu.edu.sg/context/sis_research/article/6160/viewcontent/ECML20_THIGE.pdf |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Singapore Management University |
Language: | English |
Summary: | In the scenario of next-item recommendation, previous methods attempt to model user preferences by capturing the evolution of sequential interactions. However, their sequential expression is often limited, without modeling complex dynamics that short-term demands can often be influenced by long-term habits. Moreover, few of them take into account the heterogeneous types of interaction between users and items. In this paper, we model such complex data as a Temporal Heterogeneous Interaction Graph (THIG) and learn both user and item embeddings on THIGs to address next-item recommendation. The main challenges involve two aspects: the complex dynamics and rich heterogeneity of interactions. We propose THIG Embedding (THIGE) which models the complex dynamics so that evolving short-term demands are guided by long-term historical habits, and leverages the rich heterogeneity to express the latent relevance of different-typed preferences. Extensive experiments on real-world datasets demonstrate that THIGE consistently outperforms the state-of-the-art methods. |
---|