Band selection for hyperspectral images using probabilistic memetic algorithm
Band selection plays an important role in identifying the most useful and valuable information contained in the hyperspectral images for further data analysis such as classification, clustering, etc. Memetic algorithm (MA), among other metaheuristic search methods, has been shown to achieve competit...
Saved in:
Main Authors: | , , , |
---|---|
Format: | text |
Language: | English |
Published: |
Institutional Knowledge at Singapore Management University
2014
|
Subjects: | |
Online Access: | https://ink.library.smu.edu.sg/sis_research/5207 https://ink.library.smu.edu.sg/context/sis_research/article/6210/viewcontent/Band_selection_for_hyperspectral_images_using_probabilistic_memetic_algorithm.pdf |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Singapore Management University |
Language: | English |
Summary: | Band selection plays an important role in identifying the most useful and valuable information contained in the hyperspectral images for further data analysis such as classification, clustering, etc. Memetic algorithm (MA), among other metaheuristic search methods, has been shown to achieve competitive performances in solving the NP-hard band selection problem. In this paper, we propose a formal probabilistic memetic algorithm for band selection, which is able to adaptively control the degree of global exploration against local exploitation as the search progresses. To verify the effectiveness of the proposed probabilistic mechanism, empirical studies conducted on five well-known hyperspectral images against two recently proposed state-of-the-art MAs for band selection are presented. |
---|