A fast pruned‐extreme learning machine for classification problem
Extreme learning machine (ELM) represents one of the recent successful approaches in machine learning, particularly for performing pattern classification. One key strength of ELM is the significantly low computational time required for training new classifiers since the weights of the hidden and out...
Saved in:
Main Authors: | , , , |
---|---|
Format: | text |
Language: | English |
Published: |
Institutional Knowledge at Singapore Management University
2008
|
Subjects: | |
Online Access: | https://ink.library.smu.edu.sg/sis_research/5210 https://ink.library.smu.edu.sg/context/sis_research/article/6213/viewcontent/ELM_NEUCOM_08.pdf |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Singapore Management University |
Language: | English |
id |
sg-smu-ink.sis_research-6213 |
---|---|
record_format |
dspace |
spelling |
sg-smu-ink.sis_research-62132021-11-16T04:28:40Z A fast pruned‐extreme learning machine for classification problem RONG, Hai-Jun ONG, Yew-Soon TAN, Ah-hwee ZHU, Zexuan Extreme learning machine (ELM) represents one of the recent successful approaches in machine learning, particularly for performing pattern classification. One key strength of ELM is the significantly low computational time required for training new classifiers since the weights of the hidden and output nodes are randomly chosen and analytically determined, respectively. In this paper, we address the architectural design of the ELM classifier network, since too few/many hidden nodes employed would lead to underfitting/overfitting issues in pattern classification. In particular, we describe the proposed pruned-ELM (P-ELM) algorithm as a systematic and automated approach for designing ELM classifier network. P-ELM uses statistical methods to measure the relevance of hidden nodes. Beginning from an initial large number of hidden nodes, irrelevant nodes are then pruned by considering their relevance to the class labels. As a result, the architectural design of ELM network classifier can be automated. Empirical study of P-ELM on several commonly used classification benchmark problems and with diverse forms of hidden node functions show that the proposed approach leads to compact network classifiers that generate fast response and robust prediction accuracy on unseen data, comparing with traditional ELM and other popular machine learning approaches. 2008-12-01T08:00:00Z text application/pdf https://ink.library.smu.edu.sg/sis_research/5210 info:doi/10.1016/j.neucom.2008.01.005 https://ink.library.smu.edu.sg/context/sis_research/article/6213/viewcontent/ELM_NEUCOM_08.pdf http://creativecommons.org/licenses/by-nc-nd/4.0/ Research Collection School Of Computing and Information Systems eng Institutional Knowledge at Singapore Management University Feedforward networks Extreme learning machine (ELM) Pattern classification Databases and Information Systems Numerical Analysis and Scientific Computing |
institution |
Singapore Management University |
building |
SMU Libraries |
continent |
Asia |
country |
Singapore Singapore |
content_provider |
SMU Libraries |
collection |
InK@SMU |
language |
English |
topic |
Feedforward networks Extreme learning machine (ELM) Pattern classification Databases and Information Systems Numerical Analysis and Scientific Computing |
spellingShingle |
Feedforward networks Extreme learning machine (ELM) Pattern classification Databases and Information Systems Numerical Analysis and Scientific Computing RONG, Hai-Jun ONG, Yew-Soon TAN, Ah-hwee ZHU, Zexuan A fast pruned‐extreme learning machine for classification problem |
description |
Extreme learning machine (ELM) represents one of the recent successful approaches in machine learning, particularly for performing pattern classification. One key strength of ELM is the significantly low computational time required for training new classifiers since the weights of the hidden and output nodes are randomly chosen and analytically determined, respectively. In this paper, we address the architectural design of the ELM classifier network, since too few/many hidden nodes employed would lead to underfitting/overfitting issues in pattern classification. In particular, we describe the proposed pruned-ELM (P-ELM) algorithm as a systematic and automated approach for designing ELM classifier network. P-ELM uses statistical methods to measure the relevance of hidden nodes. Beginning from an initial large number of hidden nodes, irrelevant nodes are then pruned by considering their relevance to the class labels. As a result, the architectural design of ELM network classifier can be automated. Empirical study of P-ELM on several commonly used classification benchmark problems and with diverse forms of hidden node functions show that the proposed approach leads to compact network classifiers that generate fast response and robust prediction accuracy on unseen data, comparing with traditional ELM and other popular machine learning approaches. |
format |
text |
author |
RONG, Hai-Jun ONG, Yew-Soon TAN, Ah-hwee ZHU, Zexuan |
author_facet |
RONG, Hai-Jun ONG, Yew-Soon TAN, Ah-hwee ZHU, Zexuan |
author_sort |
RONG, Hai-Jun |
title |
A fast pruned‐extreme learning machine for classification problem |
title_short |
A fast pruned‐extreme learning machine for classification problem |
title_full |
A fast pruned‐extreme learning machine for classification problem |
title_fullStr |
A fast pruned‐extreme learning machine for classification problem |
title_full_unstemmed |
A fast pruned‐extreme learning machine for classification problem |
title_sort |
fast pruned‐extreme learning machine for classification problem |
publisher |
Institutional Knowledge at Singapore Management University |
publishDate |
2008 |
url |
https://ink.library.smu.edu.sg/sis_research/5210 https://ink.library.smu.edu.sg/context/sis_research/article/6213/viewcontent/ELM_NEUCOM_08.pdf |
_version_ |
1770575333419909120 |