Probabilistic Value Selection for Space Efficient Model

An alternative to current mainstream preprocessing methods is proposed: Value Selection (VS). Unlike the existing methods such as feature selection that removes features and instance selection that eliminates instances, value selection eliminates the values (with respect to each feature) in the data...

全面介紹

Saved in:
書目詳細資料
Main Authors: NJOO, Gunarto Sindoro, ZHENG, Baihua, HSU, Kuo-Wei, PENG, Wen-Chih
格式: text
語言:English
出版: Institutional Knowledge at Singapore Management University 2020
主題:
在線閱讀:https://ink.library.smu.edu.sg/sis_research/5264
https://ink.library.smu.edu.sg/context/sis_research/article/6267/viewcontent/6._Probabilistic_Value_Selection_for_Space_Efficient__IEEE_MDM2020_.pdf
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
機構: Singapore Management University
語言: English
實物特徵
總結:An alternative to current mainstream preprocessing methods is proposed: Value Selection (VS). Unlike the existing methods such as feature selection that removes features and instance selection that eliminates instances, value selection eliminates the values (with respect to each feature) in the dataset with two purposes: reducing the model size and preserving its accuracy. Two probabilistic methods based on information theory's metric are proposed: PVS and P + VS. Extensive experiments on the benchmark datasets with various sizes are elaborated. Those results are compared with the existing preprocessing methods such as feature selection, feature transformation, and instance selection methods. Experiment results show that value selection can achieve the balance between accuracy and model size reduction.