Improving multimodal named entity recognition via entity span detection with unified multimodal transformer

In this paper, we study Multimodal Named Entity Recognition (MNER) for social media posts. Existing approaches for MNER mainly suffer from two drawbacks: (1) despite generating word-aware visual representations, their word representations are insensitive to the visual context; (2) most of them ignor...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلفون الرئيسيون: YU, Jianfei, Jing JIANG, YANG, Li, XIA, Rui
التنسيق: text
اللغة:English
منشور في: Institutional Knowledge at Singapore Management University 2020
الموضوعات:
الوصول للمادة أونلاين:https://ink.library.smu.edu.sg/sis_research/5272
https://ink.library.smu.edu.sg/context/sis_research/article/6275/viewcontent/8._Improving_Multimodal_Named_Entity_Recognition_via_Entity_Span_Detection_with_United_Multimodal_Transformer__ACL2020_.pdf
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
الوصف
الملخص:In this paper, we study Multimodal Named Entity Recognition (MNER) for social media posts. Existing approaches for MNER mainly suffer from two drawbacks: (1) despite generating word-aware visual representations, their word representations are insensitive to the visual context; (2) most of them ignore the bias brought by the visual context. To tackle the first issue, we propose a multimodal interaction module to obtain both image-aware word representations and word-aware visual representations. To alleviate the visual bias, we further propose to leverage purely text-based entity span detection as an auxiliary module, and design a Unified Multimodal Transformer to guide the final predictions with the entity span predictions. Experiments show that our unified approach achieves the new state-of-the-art performance on two benchmark datasets.