On the similarities between random regret minimization and mother logit: The case of recursive route choice models

This paper focuses on the comparison of the random regret minimization (RRM) and mother logit models for analyzing the choice between alternatives having deterministic attributes. The mother logit model allows utilities of a given alternative to depend on attributes of other alternatives. It was des...

Full description

Saved in:
Bibliographic Details
Main Authors: MAI, Tien, BASTIN, Fabian, FREJINGER, Emma
Format: text
Language:English
Published: Institutional Knowledge at Singapore Management University 2017
Subjects:
Online Access:https://ink.library.smu.edu.sg/sis_research/5286
https://ink.library.smu.edu.sg/context/sis_research/article/6289/viewcontent/1_s2.0_S1755534515300385_main.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Singapore Management University
Language: English
Description
Summary:This paper focuses on the comparison of the random regret minimization (RRM) and mother logit models for analyzing the choice between alternatives having deterministic attributes. The mother logit model allows utilities of a given alternative to depend on attributes of other alternatives. It was designed to relax the independence from irrelevant alternatives (IIA) property while keeping the random terms independently and identically distributed extreme value distributed (McFadden et al., 1978).We adapt and extend the RRM model proposed by Chorus (2014) to the case of recursive logit (RL) route choice models (Fosgerau et al., 2013). We argue that these RRM models can be cast as mother logit models and we define such models that are equivalent to the RRM ones considered in this paper. The results show that one of the RRM models and its mother logit equivalent has the best out-of-sample fit indicating that utility functions based on attribute differences best explains the choices in our application.