Progressive sequence matching for ADL plan recommendation

Activities of Daily Living (ADLs) are indicatives of a person’s lifestyle. In particular, daily ADL routines closely relate to a person’s well-being. With the objective of promoting active lifestyles, this paper presents an agent system that provides recommendations of suitable ADL plans (i.e., sele...

Full description

Saved in:
Bibliographic Details
Main Authors: GAO, Shan, WANG, Di, TAN, Ah-hwee, MIAO, Chunyan
Format: text
Language:English
Published: Institutional Knowledge at Singapore Management University 2015
Subjects:
Online Access:https://ink.library.smu.edu.sg/sis_research/5477
https://ink.library.smu.edu.sg/context/sis_research/article/6480/viewcontent/IAT2015Co.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Singapore Management University
Language: English
Description
Summary:Activities of Daily Living (ADLs) are indicatives of a person’s lifestyle. In particular, daily ADL routines closely relate to a person’s well-being. With the objective of promoting active lifestyles, this paper presents an agent system that provides recommendations of suitable ADL plans (i.e., selected ADL sequences) to individual users based on the more active lifestyles of the others. Specifically, we develop a set of quantitative measures, named wellness scores, spanning the evaluation across the physical, cognitive, emotion, and social aspects based on his or her ADL routines. Then we propose an ADL sequence learning model, named Recommendation ADL ART, or RADLART, which proactively recommends healthier choices of activities based on the learnt associations among the user profiles, ADL sequence, and wellness scores. For empirical evaluation, extensive simulations have been conducted to assess the improvement in wellness scores for synthetic users with different acceptance rates of the provided recommendations. Experiments on real users further show that recommendations given by RADLART are generally more acceptable by the users because it takes into considerations of both the user profiles and the performed activities.