Progressive sequence matching for ADL plan recommendation

Activities of Daily Living (ADLs) are indicatives of a person’s lifestyle. In particular, daily ADL routines closely relate to a person’s well-being. With the objective of promoting active lifestyles, this paper presents an agent system that provides recommendations of suitable ADL plans (i.e., sele...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلفون الرئيسيون: GAO, Shan, WANG, Di, TAN, Ah-hwee, MIAO, Chunyan
التنسيق: text
اللغة:English
منشور في: Institutional Knowledge at Singapore Management University 2015
الموضوعات:
الوصول للمادة أونلاين:https://ink.library.smu.edu.sg/sis_research/5477
https://ink.library.smu.edu.sg/context/sis_research/article/6480/viewcontent/IAT2015Co.pdf
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
المؤسسة: Singapore Management University
اللغة: English
الوصف
الملخص:Activities of Daily Living (ADLs) are indicatives of a person’s lifestyle. In particular, daily ADL routines closely relate to a person’s well-being. With the objective of promoting active lifestyles, this paper presents an agent system that provides recommendations of suitable ADL plans (i.e., selected ADL sequences) to individual users based on the more active lifestyles of the others. Specifically, we develop a set of quantitative measures, named wellness scores, spanning the evaluation across the physical, cognitive, emotion, and social aspects based on his or her ADL routines. Then we propose an ADL sequence learning model, named Recommendation ADL ART, or RADLART, which proactively recommends healthier choices of activities based on the learnt associations among the user profiles, ADL sequence, and wellness scores. For empirical evaluation, extensive simulations have been conducted to assess the improvement in wellness scores for synthetic users with different acceptance rates of the provided recommendations. Experiments on real users further show that recommendations given by RADLART are generally more acceptable by the users because it takes into considerations of both the user profiles and the performed activities.