Deep reinforcement learning approach to solve dynamic vehicle routing problem with stochastic customers
In real-world urban logistics operations, changes to the routes and tasks occur in response to dynamic events. To ensure customers’ demands are met, planners need to make these changes quickly (sometimes instantaneously). This paper proposes the formulation of a dynamic vehicle routing problem with...
محفوظ في:
المؤلفون الرئيسيون: | JOE, Waldy, LAU, Hoong Chuin |
---|---|
التنسيق: | text |
اللغة: | English |
منشور في: |
Institutional Knowledge at Singapore Management University
2020
|
الموضوعات: | |
الوصول للمادة أونلاين: | https://ink.library.smu.edu.sg/sis_research/5568 https://ink.library.smu.edu.sg/context/sis_research/article/6571/viewcontent/Deep_Reinforcement_Learning_Approach_to_Solve.pdf |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
المؤسسة: | Singapore Management University |
اللغة: | English |
مواد مشابهة
-
DEEP REINFORCEMENT LEARNING FOR SOLVING VEHICLE ROUTING PROBLEMS
بواسطة: LI JINGWEN
منشور في: (2022) -
Reinforcement learning approach to solve dynamic bi-objective police patrol dispatching and rescheduling problem
بواسطة: JOE, Waldy, وآخرون
منشور في: (2022) -
Coordinating multi-party vehicle routing with location congestion via iterative best response
بواسطة: JOE, Waldy, وآخرون
منشور في: (2023) -
Reinforcement learning approach to coordinate real-world multi-agent dynamic routing and scheduling
بواسطة: JOE WALDY,
منشور في: (2022) -
Coordinating multi-party vehicle routing with location congestion via iterative best response
بواسطة: JOE, Waldy, وآخرون
منشور في: (2021)