A genetic algorithm to minimise number of vehicles in an electric vehicle routing problem
Electric Vehicles (EVs) and charging infrastructure are starting to become commonplace in major cities around the world. For logistics providers to adopt an EV fleet, there are many factors up for consideration, such as route planning for EVs with limited travel range as well as long-term planning o...
Saved in:
Main Authors: | , |
---|---|
Format: | text |
Language: | English |
Published: |
Institutional Knowledge at Singapore Management University
2020
|
Subjects: | |
Online Access: | https://ink.library.smu.edu.sg/sis_research/5569 https://ink.library.smu.edu.sg/context/sis_research/article/6572/viewcontent/GeneticAlgorithmToMinimise_av_2020.pdf |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Singapore Management University |
Language: | English |
Summary: | Electric Vehicles (EVs) and charging infrastructure are starting to become commonplace in major cities around the world. For logistics providers to adopt an EV fleet, there are many factors up for consideration, such as route planning for EVs with limited travel range as well as long-term planning of fleet size. In this paper, we present a genetic algorithm to perform route planning that minimises the number of vehicles required. Specifically, we discuss the challenges on the violations of constraints in the EV routing problem (EVRP) arising from applying genetic algorithm operators. To overcome the challenges, techniques specific to addressing the infeasibility of solutions are discussed. We test our genetic algorithm against EVRP benchmarks and show that it outperforms them for most problem instances on both the number of vehicles as well as total time traveled. |
---|