An empirical study of the dependency networks of deep learning libraries
Deep Learning techniques have been prevalent in various domains, and more and more open source projects in GitHub rely on deep learning libraries to implement their algorithms. To that end, they should always keep pace with the latest versions of deep learning libraries to make the best use of deep...
Saved in:
Main Authors: | , , , , , |
---|---|
Format: | text |
Language: | English |
Published: |
Institutional Knowledge at Singapore Management University
2020
|
Subjects: | |
Online Access: | https://ink.library.smu.edu.sg/sis_research/5626 https://ink.library.smu.edu.sg/context/sis_research/article/6629/viewcontent/empirical_study_of_the_dependency_networks_of_deep_learning_libraries_pv.pdf |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Singapore Management University |
Language: | English |
id |
sg-smu-ink.sis_research-6629 |
---|---|
record_format |
dspace |
spelling |
sg-smu-ink.sis_research-66292021-05-27T03:48:35Z An empirical study of the dependency networks of deep learning libraries HAN, Junxiao DENG, Shuiguang LO, David ZHI, Chen YIN, Jianwei XIA, Xin Deep Learning techniques have been prevalent in various domains, and more and more open source projects in GitHub rely on deep learning libraries to implement their algorithms. To that end, they should always keep pace with the latest versions of deep learning libraries to make the best use of deep learning libraries. Aptly managing the versions of deep learning libraries can help projects avoid crashes or security issues caused by deep learning libraries. Unfortunately, very few studies have been done on the dependency networks of deep learning libraries. In this paper, we take the first step to perform an exploratory study on the dependency networks of deep learning libraries, namely, Tensorflow, PyTorch, and Theano. We study the project purposes, application domains, dependency degrees, update behaviors and reasons as well as version distributions of deep learning projects that depend on Tensorflow, PyTorch, and Theano. Our study unveils some commonalities in various aspects (e.g., purposes, application domains, dependency degrees) of deep learning libraries and reveals some discrepancies as for the update behaviors, update reasons, and the version distributions. Our findings highlight some directions for researchers and also provide suggestions for deep learning developers and users. 2020-09-01T07:00:00Z text application/pdf https://ink.library.smu.edu.sg/sis_research/5626 info:doi/10.1109/ICSME46990.2020.00116 https://ink.library.smu.edu.sg/context/sis_research/article/6629/viewcontent/empirical_study_of_the_dependency_networks_of_deep_learning_libraries_pv.pdf http://creativecommons.org/licenses/by-nc-nd/4.0/ Research Collection School Of Computing and Information Systems eng Institutional Knowledge at Singapore Management University Deep learning frameworks deep learning platforms deep learning deployment empirical study Databases and Information Systems Software Engineering |
institution |
Singapore Management University |
building |
SMU Libraries |
continent |
Asia |
country |
Singapore Singapore |
content_provider |
SMU Libraries |
collection |
InK@SMU |
language |
English |
topic |
Deep learning frameworks deep learning platforms deep learning deployment empirical study Databases and Information Systems Software Engineering |
spellingShingle |
Deep learning frameworks deep learning platforms deep learning deployment empirical study Databases and Information Systems Software Engineering HAN, Junxiao DENG, Shuiguang LO, David ZHI, Chen YIN, Jianwei XIA, Xin An empirical study of the dependency networks of deep learning libraries |
description |
Deep Learning techniques have been prevalent in various domains, and more and more open source projects in GitHub rely on deep learning libraries to implement their algorithms. To that end, they should always keep pace with the latest versions of deep learning libraries to make the best use of deep learning libraries. Aptly managing the versions of deep learning libraries can help projects avoid crashes or security issues caused by deep learning libraries. Unfortunately, very few studies have been done on the dependency networks of deep learning libraries. In this paper, we take the first step to perform an exploratory study on the dependency networks of deep learning libraries, namely, Tensorflow, PyTorch, and Theano. We study the project purposes, application domains, dependency degrees, update behaviors and reasons as well as version distributions of deep learning projects that depend on Tensorflow, PyTorch, and Theano. Our study unveils some commonalities in various aspects (e.g., purposes, application domains, dependency degrees) of deep learning libraries and reveals some discrepancies as for the update behaviors, update reasons, and the version distributions. Our findings highlight some directions for researchers and also provide suggestions for deep learning developers and users. |
format |
text |
author |
HAN, Junxiao DENG, Shuiguang LO, David ZHI, Chen YIN, Jianwei XIA, Xin |
author_facet |
HAN, Junxiao DENG, Shuiguang LO, David ZHI, Chen YIN, Jianwei XIA, Xin |
author_sort |
HAN, Junxiao |
title |
An empirical study of the dependency networks of deep learning libraries |
title_short |
An empirical study of the dependency networks of deep learning libraries |
title_full |
An empirical study of the dependency networks of deep learning libraries |
title_fullStr |
An empirical study of the dependency networks of deep learning libraries |
title_full_unstemmed |
An empirical study of the dependency networks of deep learning libraries |
title_sort |
empirical study of the dependency networks of deep learning libraries |
publisher |
Institutional Knowledge at Singapore Management University |
publishDate |
2020 |
url |
https://ink.library.smu.edu.sg/sis_research/5626 https://ink.library.smu.edu.sg/context/sis_research/article/6629/viewcontent/empirical_study_of_the_dependency_networks_of_deep_learning_libraries_pv.pdf |
_version_ |
1770575533827948544 |