Keen2Act: Activity recommendation in online social collaborative platforms

Social collaborative platforms such as GitHub and Stack Overflow have been increasingly used to improve work productivity via collaborative efforts. To improve user experiences in these platforms, it is desirable to have a recommender system that can suggest not only items (e.g., a GitHub repository...

Full description

Saved in:
Bibliographic Details
Main Authors: LEE, Roy Ka-Wei, HOANG, Thong, OENTARYO, Richard J., LO, David
Format: text
Language:English
Published: Institutional Knowledge at Singapore Management University 2020
Subjects:
Online Access:https://ink.library.smu.edu.sg/sis_research/5633
https://ink.library.smu.edu.sg/context/sis_research/article/6636/viewcontent/3340631.3394884.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Singapore Management University
Language: English
Description
Summary:Social collaborative platforms such as GitHub and Stack Overflow have been increasingly used to improve work productivity via collaborative efforts. To improve user experiences in these platforms, it is desirable to have a recommender system that can suggest not only items (e.g., a GitHub repository) to a user, but also activities to be performed on the suggested items (e.g., forking a repository). To this end, we propose a new approach dubbed Keen2Act, which decomposes the recommendation problem into two stages: the Keen and Act steps. The Keen step identifies, for a given user, a (sub)set of items in which he/she is likely to be interested. The Act step then recommends to the user which activities to perform on the identified set of items. This decomposition provides a practical approach to tackling complex activity recommendation tasks while producing higher recommendation quality. We evaluate our proposed approach using two real-world datasets and obtain promising results whereby Keen2Act outperforms several baseline models.