Enhancing machine-learning methods for sentiment classification of web data
With advances in Web technologies, more and more people are turning to popular social media platforms such as Twitter to express their feelings and opinions on a variety of topics and current issues online. Sentiment analysis of Web data is becoming a fast and effective way of evaluating public opin...
Saved in:
Main Authors: | , , |
---|---|
Format: | text |
Language: | English |
Published: |
Institutional Knowledge at Singapore Management University
2014
|
Subjects: | |
Online Access: | https://ink.library.smu.edu.sg/sis_research/5642 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Singapore Management University |
Language: | English |
id |
sg-smu-ink.sis_research-6645 |
---|---|
record_format |
dspace |
spelling |
sg-smu-ink.sis_research-66452021-01-07T13:12:02Z Enhancing machine-learning methods for sentiment classification of web data WANG, Zhaoxia TONG, Victor Joo Chuan CHIN, Hoong Chor With advances in Web technologies, more and more people are turning to popular social media platforms such as Twitter to express their feelings and opinions on a variety of topics and current issues online. Sentiment analysis of Web data is becoming a fast and effective way of evaluating public opinion and sentiment for use in marketing and social behavioral studies. This research investigates the enhancement techniques in machine-learning methods for sentiment classification of Web data. Feature selection, negation dealing, and emoticon handling are studied in this paper for their ability to improve the performance of machine-learning methods. The range of enhancement techniques is tested using different text data sets, such as tweets and movie reviews. The results show that different enhancement methods can improve classification efficacy and accuracy differently. 2014-12-05T08:00:00Z text https://ink.library.smu.edu.sg/sis_research/5642 info:doi/10.1007/978-3-319-12844-3_34 Research Collection School Of Computing and Information Systems eng Institutional Knowledge at Singapore Management University Web data Emoticon handling Feature selection Hybrid method Machine learning Negation dealing Sentiment classification Twitter Numerical Analysis and Scientific Computing Social Media |
institution |
Singapore Management University |
building |
SMU Libraries |
continent |
Asia |
country |
Singapore Singapore |
content_provider |
SMU Libraries |
collection |
InK@SMU |
language |
English |
topic |
Web data Emoticon handling Feature selection Hybrid method Machine learning Negation dealing Sentiment classification Numerical Analysis and Scientific Computing Social Media |
spellingShingle |
Web data Emoticon handling Feature selection Hybrid method Machine learning Negation dealing Sentiment classification Numerical Analysis and Scientific Computing Social Media WANG, Zhaoxia TONG, Victor Joo Chuan CHIN, Hoong Chor Enhancing machine-learning methods for sentiment classification of web data |
description |
With advances in Web technologies, more and more people are turning to popular social media platforms such as Twitter to express their feelings and opinions on a variety of topics and current issues online. Sentiment analysis of Web data is becoming a fast and effective way of evaluating public opinion and sentiment for use in marketing and social behavioral studies. This research investigates the enhancement techniques in machine-learning methods for sentiment classification of Web data. Feature selection, negation dealing, and emoticon handling are studied in this paper for their ability to improve the performance of machine-learning methods. The range of enhancement techniques is tested using different text data sets, such as tweets and movie reviews. The results show that different enhancement methods can improve classification efficacy and accuracy differently. |
format |
text |
author |
WANG, Zhaoxia TONG, Victor Joo Chuan CHIN, Hoong Chor |
author_facet |
WANG, Zhaoxia TONG, Victor Joo Chuan CHIN, Hoong Chor |
author_sort |
WANG, Zhaoxia |
title |
Enhancing machine-learning methods for sentiment classification of web data |
title_short |
Enhancing machine-learning methods for sentiment classification of web data |
title_full |
Enhancing machine-learning methods for sentiment classification of web data |
title_fullStr |
Enhancing machine-learning methods for sentiment classification of web data |
title_full_unstemmed |
Enhancing machine-learning methods for sentiment classification of web data |
title_sort |
enhancing machine-learning methods for sentiment classification of web data |
publisher |
Institutional Knowledge at Singapore Management University |
publishDate |
2014 |
url |
https://ink.library.smu.edu.sg/sis_research/5642 |
_version_ |
1770575547854749696 |