Generating face images with attributes for free

With superhuman-level performance of face recognition, we are more concerned about the recognition of fine-grained attributes, such as emotion, age, and gender. However, given that the label space is extremely large and follows a long-tail distribution, it is quite expensive to collect sufficient sa...

Full description

Saved in:
Bibliographic Details
Main Authors: LIU, Yaoyao, SUN, Qianru, HE Xiangnan, LIU An-An, SU Yuting, CHUA Tat-Seng
Format: text
Language:English
Published: Institutional Knowledge at Singapore Management University 2021
Subjects:
Online Access:https://ink.library.smu.edu.sg/sis_research/5643
https://ink.library.smu.edu.sg/context/sis_research/article/6646/viewcontent/Generating_Face_Images_with_Attributes_for_Free_av.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Singapore Management University
Language: English
Description
Summary:With superhuman-level performance of face recognition, we are more concerned about the recognition of fine-grained attributes, such as emotion, age, and gender. However, given that the label space is extremely large and follows a long-tail distribution, it is quite expensive to collect sufficient samples for fine-grained attributes. This results in imbalanced training samples and inferior attribute recognition models. To this end, we propose the use of arbitrary attribute combinations, without human effort, to synthesize face images. In particular, to bridge the semantic gap between high-level attribute label space and low-level face image, we propose a novel neural-network-based approach that maps the target attribute labels to an embedding vector, which can be fed into a pretrained image decoder to synthesize a new face image. Furthermore, to regularize the attribute for image synthesis, we propose to use a perceptual loss to make the new image explicitly faithful to target attributes. Experimental results show that our approach can generate photorealistic face images from attribute labels, and more importantly, by serving as augmented training samples, these images can significantly boost the performance of attribute recognition model. The code is open-sourced at this link.