Search me in the dark: Privacy-preserving Boolean range query over encrypted spatial data
With the increasing popularity of geo-positioning technologies and mobile Internet, spatial keyword data services have attracted growing interest from both the industrial and academic communities in recent years. Meanwhile, a massive amount of data is increasingly being outsourced to cloud in the en...
Saved in:
Main Authors: | , , , , , , |
---|---|
Format: | text |
Language: | English |
Published: |
Institutional Knowledge at Singapore Management University
2020
|
Subjects: | |
Online Access: | https://ink.library.smu.edu.sg/sis_research/5923 https://ink.library.smu.edu.sg/context/sis_research/article/6926/viewcontent/SearchMeintheDark_av.pdf |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Singapore Management University |
Language: | English |
id |
sg-smu-ink.sis_research-6926 |
---|---|
record_format |
dspace |
spelling |
sg-smu-ink.sis_research-69262021-05-11T03:37:08Z Search me in the dark: Privacy-preserving Boolean range query over encrypted spatial data WANG, Xiangyu MA, Jianfeng LIU, Ximeng DENG, Robert H. MIAO, Yinbin ZHU, Dan MA, Zhuoran With the increasing popularity of geo-positioning technologies and mobile Internet, spatial keyword data services have attracted growing interest from both the industrial and academic communities in recent years. Meanwhile, a massive amount of data is increasingly being outsourced to cloud in the encrypted form for enjoying the advantages of cloud computing while without compromising data privacy. Most existing works primarily focus on the privacy-preserving schemes for either spatial or keyword queries, and they cannot be directly applied to solve the spatial keyword query problem over encrypted data. In this paper, we study the challenging problem of Privacy-preserving Boolean Range Query (PBRQ) over encrypted spatial databases. In particular, we propose two novel PBRQ schemes. Firstly, we present a scheme with linear search complexity based on the space-filling curve code and Symmetric-key Hidden Vector Encryption (SHVE). Then, we use tree structures to achieve faster-than-linear search complexity. Thorough security analysis shows that data security and query privacy can be guaranteed during the query process. Experimental results using real-world datasets show that the proposed schemes are efficient and feasible for practical applications, which is at least ×70 faster than existing techniques in the literature. 2020-07-01T07:00:00Z text application/pdf https://ink.library.smu.edu.sg/sis_research/5923 info:doi/10.1109/INFOCOM41043.2020.9155505 https://ink.library.smu.edu.sg/context/sis_research/article/6926/viewcontent/SearchMeintheDark_av.pdf http://creativecommons.org/licenses/by-nc-nd/4.0/ Research Collection School Of Computing and Information Systems eng Institutional Knowledge at Singapore Management University Privacy-preserving Boolean range queries Encrypted spatial data Information Security |
institution |
Singapore Management University |
building |
SMU Libraries |
continent |
Asia |
country |
Singapore Singapore |
content_provider |
SMU Libraries |
collection |
InK@SMU |
language |
English |
topic |
Privacy-preserving Boolean range queries Encrypted spatial data Information Security |
spellingShingle |
Privacy-preserving Boolean range queries Encrypted spatial data Information Security WANG, Xiangyu MA, Jianfeng LIU, Ximeng DENG, Robert H. MIAO, Yinbin ZHU, Dan MA, Zhuoran Search me in the dark: Privacy-preserving Boolean range query over encrypted spatial data |
description |
With the increasing popularity of geo-positioning technologies and mobile Internet, spatial keyword data services have attracted growing interest from both the industrial and academic communities in recent years. Meanwhile, a massive amount of data is increasingly being outsourced to cloud in the encrypted form for enjoying the advantages of cloud computing while without compromising data privacy. Most existing works primarily focus on the privacy-preserving schemes for either spatial or keyword queries, and they cannot be directly applied to solve the spatial keyword query problem over encrypted data. In this paper, we study the challenging problem of Privacy-preserving Boolean Range Query (PBRQ) over encrypted spatial databases. In particular, we propose two novel PBRQ schemes. Firstly, we present a scheme with linear search complexity based on the space-filling curve code and Symmetric-key Hidden Vector Encryption (SHVE). Then, we use tree structures to achieve faster-than-linear search complexity. Thorough security analysis shows that data security and query privacy can be guaranteed during the query process. Experimental results using real-world datasets show that the proposed schemes are efficient and feasible for practical applications, which is at least ×70 faster than existing techniques in the literature. |
format |
text |
author |
WANG, Xiangyu MA, Jianfeng LIU, Ximeng DENG, Robert H. MIAO, Yinbin ZHU, Dan MA, Zhuoran |
author_facet |
WANG, Xiangyu MA, Jianfeng LIU, Ximeng DENG, Robert H. MIAO, Yinbin ZHU, Dan MA, Zhuoran |
author_sort |
WANG, Xiangyu |
title |
Search me in the dark: Privacy-preserving Boolean range query over encrypted spatial data |
title_short |
Search me in the dark: Privacy-preserving Boolean range query over encrypted spatial data |
title_full |
Search me in the dark: Privacy-preserving Boolean range query over encrypted spatial data |
title_fullStr |
Search me in the dark: Privacy-preserving Boolean range query over encrypted spatial data |
title_full_unstemmed |
Search me in the dark: Privacy-preserving Boolean range query over encrypted spatial data |
title_sort |
search me in the dark: privacy-preserving boolean range query over encrypted spatial data |
publisher |
Institutional Knowledge at Singapore Management University |
publishDate |
2020 |
url |
https://ink.library.smu.edu.sg/sis_research/5923 https://ink.library.smu.edu.sg/context/sis_research/article/6926/viewcontent/SearchMeintheDark_av.pdf |
_version_ |
1770575665827938304 |