Reinforcement learning for zone based multiagent pathfinding under uncertainty
We address the problem of multiple agents finding their paths from respective sources to destination nodes in a graph (also called MAPF). Most existing approaches assume that all agents move at fixed speed, and that a single node accommodates only a single agent. Motivated by the emerging applicatio...
Saved in:
Main Authors: | , , |
---|---|
格式: | text |
語言: | English |
出版: |
Institutional Knowledge at Singapore Management University
2020
|
主題: | |
在線閱讀: | https://ink.library.smu.edu.sg/sis_research/5963 https://ink.library.smu.edu.sg/context/sis_research/article/6966/viewcontent/Reinforcement_Learning_for_Zone_Based_Multiagent_Pathfinding_under_Uncertainty.pdf |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|