GRAND-VISION: An intelligent system for optimized deployment scheduling of law enforcement agents

Law enforcement agencies in dense urban environments, faced with a wide range of incidents to handle and limited manpower, are turning to data-driven AI to inform their policing strategy. In this paper we present a patrol scheduling system called GRAND-VISION: Ground Response Allocation and Deployme...

Full description

Saved in:
Bibliographic Details
Main Authors: CHASE, Jonathan, PHONG, Tran, LONG, Kang, LE, Tony, LAU, Hoong Chuin
Format: text
Language:English
Published: Institutional Knowledge at Singapore Management University 2021
Subjects:
Online Access:https://ink.library.smu.edu.sg/sis_research/5980
https://ink.library.smu.edu.sg/context/sis_research/article/6983/viewcontent/Chase__J.__Phong__T.__Long__K.__Le__T.____Lau__H._C.__2021__May_._GRAND_VISION_An_Intelligent_System_for_Optimized_Deployment_Scheduling_of_Law_Enforcement_Agents.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Singapore Management University
Language: English
Description
Summary:Law enforcement agencies in dense urban environments, faced with a wide range of incidents to handle and limited manpower, are turning to data-driven AI to inform their policing strategy. In this paper we present a patrol scheduling system called GRAND-VISION: Ground Response Allocation and Deployment - Visualization, Simulation, and Optimization. The system employs deep learning to generate incident sets that are used to train a patrol schedule that can accommodate varying manpower, break times, manual pre-allocations, and a variety of spatio-temporal demand features. The complexity of the scenario results in a system with real world applicability, which we demonstrate through simulation on historical data obtained from a large urban law enforcement agency.