Learning and exploiting shaped reward models for large scale multiagent RL
Many real world systems involve interaction among large number of agents to achieve a common goal, for example, air traffic control. Several model-free RL algorithms have been proposed for such settings. A key limitation is that the empirical reward signal in model-free case is not very effective in...
Saved in:
Main Authors: | , , |
---|---|
格式: | text |
語言: | English |
出版: |
Institutional Knowledge at Singapore Management University
2021
|
主題: | |
在線閱讀: | https://ink.library.smu.edu.sg/sis_research/6032 https://ink.library.smu.edu.sg/context/sis_research/article/7035/viewcontent/ICAPS_2021___Learning_Shaped_Reward_Models_for_Large_Scale_Multiagent_RL.pdf |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|