Learning to pre-train graph neural networks
Graph neural networks (GNNs) have become the de facto standard for representation learning on graphs, which derive effective node representations by recursively aggregating information from graph neighborhoods. While GNNs can be trained from scratch, pre-training GNNs to learn transferable knowledge...
محفوظ في:
المؤلفون الرئيسيون: | LU, Yuanfu, JIANG, Xunqiang, FANG, Yuan, SHI, Chuan |
---|---|
التنسيق: | text |
اللغة: | English |
منشور في: |
Institutional Knowledge at Singapore Management University
2021
|
الموضوعات: | |
الوصول للمادة أونلاين: | https://ink.library.smu.edu.sg/sis_research/6125 https://ink.library.smu.edu.sg/context/sis_research/article/7128/viewcontent/16552_Article_Text_20046_1_2_20210518.pdf |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
مواد مشابهة
-
Contrastive pre-training of GNNs on heterogeneous graphs
بواسطة: JIANG, Xunqiang, وآخرون
منشور في: (2021) -
Graphprompt: Unifying pre-training and downstream tasks for graph neural networks
بواسطة: LIU, Zemin, وآخرون
منشور في: (2023) -
Pre-training on large-scale heterogeneous graph
بواسطة: JIANG, Xunqiang, وآخرون
منشور في: (2021) -
Generalizing graph neural network across graphs and time
بواسطة: WEN, Zhihao
منشور في: (2023) -
Augmenting low-resource text classification with graph-grounded pre-training and prompting
بواسطة: WEN, Zhihao, وآخرون
منشور في: (2023)