A self-organizing multi-memory system for autonomous agents
This paper presents a self-organizing approach to the learning of procedural and declarative knowledge in parallel using independent but interconnected memory models. The proposed system, employing fusion Adaptive Resonance Theory (fusion ART) network as a building block, consists of a declarative m...
Saved in:
Main Authors: | , , , |
---|---|
Format: | text |
Language: | English |
Published: |
Institutional Knowledge at Singapore Management University
2012
|
Subjects: | |
Online Access: | https://ink.library.smu.edu.sg/sis_research/6165 https://ink.library.smu.edu.sg/context/sis_research/article/7168/viewcontent/6887719.pdf |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Singapore Management University |
Language: | English |
Summary: | This paper presents a self-organizing approach to the learning of procedural and declarative knowledge in parallel using independent but interconnected memory models. The proposed system, employing fusion Adaptive Resonance Theory (fusion ART) network as a building block, consists of a declarative memory module, that learns both episodic traces and semantic knowledge in real time, as well as a procedural memory module that learns reactive responses to its environment through reinforcement learning. More importantly, the proposed multi-memory system demonstrates how the various memory modules transfer knowledge and cooperate with each other for a higher overall performance. We present experimental studies, wherein the proposed system is tasked to learn the procedural and declarative knowledge for an autonomous agent playing in a first person game environment called Unreal Tournament. Our experimental results show that the multi-memory system is able to enhance the performance of the agent in a real time environment by utilizing both its procedural and declarative knowledge. |
---|