Towards efficient motif-based graph partitioning: An adaptive sampling approach
In this paper, we study the problem of efficient motif-based graph partitioning (MGP). We observe that existing methods require to enumerate all motif instances to compute the exact edge weights for partitioning. However, the enumeration is prohibitively expensive against large graphs. We thus propo...
Saved in:
Main Authors: | , , , |
---|---|
Format: | text |
Language: | English |
Published: |
Institutional Knowledge at Singapore Management University
2021
|
Subjects: | |
Online Access: | https://ink.library.smu.edu.sg/sis_research/6205 https://ink.library.smu.edu.sg/context/sis_research/article/7208/viewcontent/TR.pdf |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Singapore Management University |
Language: | English |
id |
sg-smu-ink.sis_research-7208 |
---|---|
record_format |
dspace |
spelling |
sg-smu-ink.sis_research-72082021-10-14T06:58:52Z Towards efficient motif-based graph partitioning: An adaptive sampling approach HUANG, Shixun LI, Yuchen BAO, Zhifeng LI, Zhao In this paper, we study the problem of efficient motif-based graph partitioning (MGP). We observe that existing methods require to enumerate all motif instances to compute the exact edge weights for partitioning. However, the enumeration is prohibitively expensive against large graphs. We thus propose a sampling-based MGP (SMGP) framework that employs an unbiased sampling mechanism to efficiently estimate the edge weights while trying to preserve the partitioning quality. To further improve the effectiveness, we propose a novel adaptive sampling framework called SMGP+. SMGP+ iteratively partitions the input graph based on up-to-date estimated edge weights, and adaptively adjusts the sampling distribution so that edges that are more likely to affect the partitioning outcome will be prioritized for weight estimation. To our best knowledge, this is the first attempt to solve the MGP problem without employing exact edge weight computations, which gives hope for existing MGP methods to perform on complicated motifs in a scalable yet effective manner. Extensive experiments on seven real-world datasets have validated that our framework delivers competitive partitioning quality compared to existing workflows based on exact edge weights, while achieving orders of magnitude speedup. 2021-04-01T07:00:00Z text application/pdf https://ink.library.smu.edu.sg/sis_research/6205 info:doi/10.1109/ICDE51399.2021.00052 https://ink.library.smu.edu.sg/context/sis_research/article/7208/viewcontent/TR.pdf http://creativecommons.org/licenses/by-nc-nd/4.0/ Research Collection School Of Computing and Information Systems eng Institutional Knowledge at Singapore Management University Databases and Information Systems Data Storage Systems |
institution |
Singapore Management University |
building |
SMU Libraries |
continent |
Asia |
country |
Singapore Singapore |
content_provider |
SMU Libraries |
collection |
InK@SMU |
language |
English |
topic |
Databases and Information Systems Data Storage Systems |
spellingShingle |
Databases and Information Systems Data Storage Systems HUANG, Shixun LI, Yuchen BAO, Zhifeng LI, Zhao Towards efficient motif-based graph partitioning: An adaptive sampling approach |
description |
In this paper, we study the problem of efficient motif-based graph partitioning (MGP). We observe that existing methods require to enumerate all motif instances to compute the exact edge weights for partitioning. However, the enumeration is prohibitively expensive against large graphs. We thus propose a sampling-based MGP (SMGP) framework that employs an unbiased sampling mechanism to efficiently estimate the edge weights while trying to preserve the partitioning quality. To further improve the effectiveness, we propose a novel adaptive sampling framework called SMGP+. SMGP+ iteratively partitions the input graph based on up-to-date estimated edge weights, and adaptively adjusts the sampling distribution so that edges that are more likely to affect the partitioning outcome will be prioritized for weight estimation. To our best knowledge, this is the first attempt to solve the MGP problem without employing exact edge weight computations, which gives hope for existing MGP methods to perform on complicated motifs in a scalable yet effective manner. Extensive experiments on seven real-world datasets have validated that our framework delivers competitive partitioning quality compared to existing workflows based on exact edge weights, while achieving orders of magnitude speedup. |
format |
text |
author |
HUANG, Shixun LI, Yuchen BAO, Zhifeng LI, Zhao |
author_facet |
HUANG, Shixun LI, Yuchen BAO, Zhifeng LI, Zhao |
author_sort |
HUANG, Shixun |
title |
Towards efficient motif-based graph partitioning: An adaptive sampling approach |
title_short |
Towards efficient motif-based graph partitioning: An adaptive sampling approach |
title_full |
Towards efficient motif-based graph partitioning: An adaptive sampling approach |
title_fullStr |
Towards efficient motif-based graph partitioning: An adaptive sampling approach |
title_full_unstemmed |
Towards efficient motif-based graph partitioning: An adaptive sampling approach |
title_sort |
towards efficient motif-based graph partitioning: an adaptive sampling approach |
publisher |
Institutional Knowledge at Singapore Management University |
publishDate |
2021 |
url |
https://ink.library.smu.edu.sg/sis_research/6205 https://ink.library.smu.edu.sg/context/sis_research/article/7208/viewcontent/TR.pdf |
_version_ |
1770575891021168640 |