Video summarization and scene detection by graph modeling

In this paper, we propose a unified approach for video summarization based on the analysis of video structures and video highlights. Two major components in our approach are scene modeling and highlight detection. Scene modeling is achieved by normalized cut algorithm and temporal graph analysis, wh...

Full description

Saved in:
Bibliographic Details
Main Authors: NGO, Chong-wah, MA, Yu-Fei, ZHANG, Hong-Jiang
Format: text
Language:English
Published: Institutional Knowledge at Singapore Management University 2005
Subjects:
Online Access:https://ink.library.smu.edu.sg/sis_research/6351
https://ink.library.smu.edu.sg/context/sis_research/article/7354/viewcontent/tcsvt05.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Singapore Management University
Language: English
Description
Summary:In this paper, we propose a unified approach for video summarization based on the analysis of video structures and video highlights. Two major components in our approach are scene modeling and highlight detection. Scene modeling is achieved by normalized cut algorithm and temporal graph analysis, while highlight detection is accomplished by motion attention modeling. In our proposed approach, a video is represented as a complete undirected graph and the normalized cut algorithm is carried out to globally and optimally partition the graph into video clusters. The resulting clusters form a directed temporal graph and a shortest path algorithm is proposed to efficiently detect video scenes. The attention values are then computed and attached to the scenes, clusters, shots, and subshots in a temporal graph. As a result, the temporal graph can inherently describe the evolution and perceptual importance of a video. In our application, video summaries that emphasize both content balance and perceptual quality can be generated directly from a temporal graph that embeds both the structure and attention information.