Visual word proximity and linguistics for semantic video indexing and near-duplicate retrieval
Bag-of-visual-words (BoW) has recently become a popular representation to describe video and image content. Most existing approaches, nevertheless, neglect inter-word relatedness and measure similarity by bin-to-bin comparison of visual words in histograms. In this paper, we explore the linguistic a...
Saved in:
Main Authors: | , |
---|---|
Format: | text |
Language: | English |
Published: |
Institutional Knowledge at Singapore Management University
2009
|
Subjects: | |
Online Access: | https://ink.library.smu.edu.sg/sis_research/6372 https://ink.library.smu.edu.sg/context/sis_research/article/7375/viewcontent/10.1.1.439.3117.pdf |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Singapore Management University |
Language: | English |
Summary: | Bag-of-visual-words (BoW) has recently become a popular representation to describe video and image content. Most existing approaches, nevertheless, neglect inter-word relatedness and measure similarity by bin-to-bin comparison of visual words in histograms. In this paper, we explore the linguistic and ontological aspects of visual words for video analysis. Two approaches, soft-weighting and constraint-based earth mover’s distance (CEMD), are proposed to model different aspects of visual word linguistics and proximity. In soft-weighting, visual words are cleverly weighted such that the linguistic meaning of words is taken into account for bin-to-bin histogram comparison. In CEMD, a cross-bin matching algorithm is formulated such that the ground distance measure considers the linguistic similarity of words. In particular, a BoW ontology which hierarchically specifies the hyponym relationship of words is constructed to assist the reasoning. We demonstrate soft-weighting and CEMD on two tasks: video semantic indexing and near-duplicate keyframe retrieval. Experimental results indicate that soft-weighting is superior to other popular weighting schemes such as term frequency (TF) weighting in large-scale video database. In addition, CEMD shows excellent performance compared to cosine similarity in near-duplicate retrieval. |
---|