Discriminant analysis on Riemannian manifold of Gaussian distributions for face recognition with image sets
This paper presents a method named Discriminant Analysis on Riemannian manifold of Gaussian distributions (DARG) to solve the problem of face recognition with image sets. Our goal is to capture the underlying data distribution in each set and thus facilitate more robust classification. To this end,...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | text |
Language: | English |
Published: |
Institutional Knowledge at Singapore Management University
2015
|
Subjects: | |
Online Access: | https://ink.library.smu.edu.sg/sis_research/6391 https://ink.library.smu.edu.sg/context/sis_research/article/7394/viewcontent/Discriminant_analysis_on_Riemannian_manifold_of_Gaussian_distributions_for_face_recognition_with_image_sets__1_.pdf |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Singapore Management University |
Language: | English |
id |
sg-smu-ink.sis_research-7394 |
---|---|
record_format |
dspace |
spelling |
sg-smu-ink.sis_research-73942021-11-23T02:35:08Z Discriminant analysis on Riemannian manifold of Gaussian distributions for face recognition with image sets WANG, Wen. WANG, Ruiping. HUANG, Zhiwu SHAN, Shiguang. CHEN, Xilin. This paper presents a method named Discriminant Analysis on Riemannian manifold of Gaussian distributions (DARG) to solve the problem of face recognition with image sets. Our goal is to capture the underlying data distribution in each set and thus facilitate more robust classification. To this end, we represent image set as Gaussian Mixture Model (GMM) comprising a number of Gaussian components with prior probabilities and seek to discriminate Gaussian components from different classes. In the light of information geometry, the Gaussians lie on a specific Riemannian manifold. To encode such Riemannian geometry properly, we investigate several distances between Gaussians and further derive a series of provably positive definite probabilistic kernels. Through these kernels, a weighted Kernel Discriminant Analysis is finally devised which treats the Gaussians in GMMs as samples and their prior probabilities as sample weights. The proposed method is evaluated by face identification and verification tasks on four most challenging and largest databases, YouTube Celebrities, COX, YouTube Face DB and Point-and-Shoot Challenge, to demonstrate its superiority over the state-of-the-art. 2015-06-01T07:00:00Z text application/pdf https://ink.library.smu.edu.sg/sis_research/6391 info:doi/10.1109/CVPR.2015.7298816 https://ink.library.smu.edu.sg/context/sis_research/article/7394/viewcontent/Discriminant_analysis_on_Riemannian_manifold_of_Gaussian_distributions_for_face_recognition_with_image_sets__1_.pdf http://creativecommons.org/licenses/by-nc-nd/4.0/ Research Collection School Of Computing and Information Systems eng Institutional Knowledge at Singapore Management University Gaussian distribution graph embedding kernel discriminative learning statistical manifold Artificial Intelligence and Robotics |
institution |
Singapore Management University |
building |
SMU Libraries |
continent |
Asia |
country |
Singapore Singapore |
content_provider |
SMU Libraries |
collection |
InK@SMU |
language |
English |
topic |
Gaussian distribution graph embedding kernel discriminative learning statistical manifold Artificial Intelligence and Robotics |
spellingShingle |
Gaussian distribution graph embedding kernel discriminative learning statistical manifold Artificial Intelligence and Robotics WANG, Wen. WANG, Ruiping. HUANG, Zhiwu SHAN, Shiguang. CHEN, Xilin. Discriminant analysis on Riemannian manifold of Gaussian distributions for face recognition with image sets |
description |
This paper presents a method named Discriminant Analysis on Riemannian manifold of Gaussian distributions (DARG) to solve the problem of face recognition with image sets. Our goal is to capture the underlying data distribution in each set and thus facilitate more robust classification. To this end, we represent image set as Gaussian Mixture Model (GMM) comprising a number of Gaussian components with prior probabilities and seek to discriminate Gaussian components from different classes. In the light of information geometry, the Gaussians lie on a specific Riemannian manifold. To encode such Riemannian geometry properly, we investigate several distances between Gaussians and further derive a series of provably positive definite probabilistic kernels. Through these kernels, a weighted Kernel Discriminant Analysis is finally devised which treats the Gaussians in GMMs as samples and their prior probabilities as sample weights. The proposed method is evaluated by face identification and verification tasks on four most challenging and largest databases, YouTube Celebrities, COX, YouTube Face DB and Point-and-Shoot Challenge, to demonstrate its superiority over the state-of-the-art. |
format |
text |
author |
WANG, Wen. WANG, Ruiping. HUANG, Zhiwu SHAN, Shiguang. CHEN, Xilin. |
author_facet |
WANG, Wen. WANG, Ruiping. HUANG, Zhiwu SHAN, Shiguang. CHEN, Xilin. |
author_sort |
WANG, Wen. |
title |
Discriminant analysis on Riemannian manifold of Gaussian distributions for face recognition with image sets |
title_short |
Discriminant analysis on Riemannian manifold of Gaussian distributions for face recognition with image sets |
title_full |
Discriminant analysis on Riemannian manifold of Gaussian distributions for face recognition with image sets |
title_fullStr |
Discriminant analysis on Riemannian manifold of Gaussian distributions for face recognition with image sets |
title_full_unstemmed |
Discriminant analysis on Riemannian manifold of Gaussian distributions for face recognition with image sets |
title_sort |
discriminant analysis on riemannian manifold of gaussian distributions for face recognition with image sets |
publisher |
Institutional Knowledge at Singapore Management University |
publishDate |
2015 |
url |
https://ink.library.smu.edu.sg/sis_research/6391 https://ink.library.smu.edu.sg/context/sis_research/article/7394/viewcontent/Discriminant_analysis_on_Riemannian_manifold_of_Gaussian_distributions_for_face_recognition_with_image_sets__1_.pdf |
_version_ |
1770575951651930112 |