End-to-end hierarchical reinforcement learning with integrated subgoal discovery

Hierarchical reinforcement learning (HRL) is a promising approach to perform long-horizon goal-reaching tasks by decomposing the goals into subgoals. In a holistic HRL paradigm, an agent must autonomously discover such subgoals and also learn a hierarchy of policies that uses them to reach the goals...

Full description

Saved in:
Bibliographic Details
Main Authors: PATERIA, Shubham, SUBAGDJA, Budhitama, TAN, Ah-hwee, QUEK, Chai
Format: text
Language:English
Published: Institutional Knowledge at Singapore Management University 2022
Subjects:
Online Access:https://ink.library.smu.edu.sg/sis_research/6416
https://ink.library.smu.edu.sg/context/sis_research/article/7419/viewcontent/End_to_End_Hierarchical_Reinforcement_Learning___IEEE_TNNLS_2021__Preprint_.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Singapore Management University
Language: English