Variational learning from implicit bandit feedback

Recommendations are prevalent in Web applications (e.g., search ranking, item recommendation, advertisement placement). Learning from bandit feedback is challenging due to the sparsity of feedback limited to system-provided actions. In this work, we focus on batch learning from logs of recommender s...

Full description

Saved in:
Bibliographic Details
Main Authors: TRUONG, Quoc Tuan, LAUW, Hady W.
Format: text
Language:English
Published: Institutional Knowledge at Singapore Management University 2021
Subjects:
Online Access:https://ink.library.smu.edu.sg/sis_research/6431
https://ink.library.smu.edu.sg/context/sis_research/article/7434/viewcontent/ml21.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Singapore Management University
Language: English
Description
Summary:Recommendations are prevalent in Web applications (e.g., search ranking, item recommendation, advertisement placement). Learning from bandit feedback is challenging due to the sparsity of feedback limited to system-provided actions. In this work, we focus on batch learning from logs of recommender systems involving both bandit and organic feedbacks. We develop a probabilistic framework with a likelihood function for estimating not only explicit positive observations but also implicit negative observations inferred from the data. Moreover, we introduce a latent variable model for organic-bandit feedbacks to robustly capture user preference distributions. Next, we analyze the behavior of the new likelihood under two scenarios, i.e., with and without counterfactual re-weighting. For speedier item ranking, we further investigate the possibility of using Maximum-a-Posteriori (MAP) estimate instead of Monte Carlo (MC)-based approximation for prediction. Experiments on both real datasets as well as data from a simulation environment show substantial performance improvements over comparable baselines.